TECHNICAL MANUAL AND PARTS LIST

WESTERBEKE

15 hp Mini-Diesel Engine MODEL FOUR-60

> Publication Number 16521 Issue Date June 1, 1972

INTRODUCTION

This manual describes the operation, adjustment and maintenance of the Westerbeke Model Four-60 Marine Diesel Engine, and is designed to be a guide for those concerned with the operation and maintenance of these diesels.

The diesel engine closely resembles the gasoline engine inasmuch as the mechanism is essentially the same. Its cylinders are arranged above its closed crankcase, its crankshaft is one of the same general type as that of a gasoline engine; it has the same sort of valves, camshaft, pistons, connecting rods and lubricating system and reverse and reduction gear.

Therefore, it follows to a great extent that a diesel engine requires the same preventive maintenance as that which any intelligent and careful operator would give to a gasoline engine. The most important factors are proper maintenance of the fuel, lubricating and cooling systems. Replacement of fuel and lubricating filter elements at the time periods specified is a must and frequent checking for contamination (i.e., water, sediment, etc.) in the fuel system is also essential. Another important factor is the use of the same brand of a "High Detergent" diesel lubricating oil designed specifically for diesel engines.

The diesel engine does differ from the gasoline engine, however, in the method of handling and firing its fuel. Carburetor and ignition systems are done away with and in their place is a single component – the Fuel Injection Pump – which performs the functions of both.

Unremitting care and attention at the factory have resulted in an engine capable of many thousands of hours of service. What the manufacturer cannot control however, is the treatment the product will receive in service. This part rests with you.

Whenever service parts are ordered, always give complete description and part numbers with engine model and number. As an example:

Please supply:

For Four-60 Marine Diesel Engine No. 3870 10 of 11951 LUBE OIL FILTERS

The serial number is stamped on the name plate affixed to the exhaust manifold.

WESTERBEKE MODEL FOUR-60

15 h. p. Mini Diesel Engine

TABLEOFCONTENTS

INTRODUCTION	2
PHOTOGRAPHS	4
INSTALLATION DRAWINGS	5
GENERALDATA	6
INSTALLATION	9
OPERATION	17
LUBRICATION SYSTEM	SECTION A
COOLING SYSTEM	SECTION B
FUEL SYSTEM	SECTION C
SAO TRANSMISSION	45
SSL TRANSMISSION	62

STARBOARD AND PORT VIEWS -FOUR 60/SAO

STARBOARD AND PORT VIEWS-FOUR 60/SSL

Photos above show the SSL Transmission which was designed for the Four-60 Diesel.

The gear is available in two Ratios, 1.3:1 and 2:1. Its small size and moderate offset greatly increases installability of Four-60 by de-creasing length to 30 inches and reducing depth belowpropeller shaft line to4 3/4 inches.

·

•

. .

. . .

INSTALLATION DRAWINGS

Four-60/SAO Reverse and Reduction Gear

Four-60/SSL Reverse Gear

GENERAL DATA

DIESEL ENGINE

Number of cylinders .						4.
Compression ratio .			•••	••	••	23.6 : 1.
Bore			••	••	••	2.477 to 2.4785 in. (62.915 to 62-941 mm.).
Stroke			••	••	••	3.0 in. (76.2 mm.).
Capacity		• •	••	••	••	57.9 cu. in. (948 c.c.).
Idling speed	• ••	••	••	••	••	600 г.р.м.
Maximum governed light	running	speed	••	••	••	2,750 r.p.m.
Maximum speed under lo	ad	••		••	••	2,500 r.p.m.
Torque	• ••		••	••	••	38 lb. ft. (5-32 kg. m) at 1,750 r.p.m.
Pistons and rings						
Piston ring groove clea	rance:					
No. 1-compression						•0025 to •0045 in. (062 to •113 mm.).
Nos. 2 and 3 —comp	ression					•0015 to •0035 in. (038 to •097 mm.).
Nos. 4 and 5—oil sci	raper					•0015 to •0035 in. (•038 to •097 mm.).
Piston ring fitted gap:	1					· /
No. 1—compression				• •	••	•010 to -015 in. (254 to •381 mm.).
Nos. 2 and 3comp	ression				••	•007 to •012 in. (-178 to -305 mm.).
Nos. 4 and 5—oil sci	raper					•007 to •012 in. (178 to •305 mm.).
Piston to bore clearanc	e (at bo	ttom of	skirt)		••	•0031 to •0037 in. (•787 to •940 mm.).
			-			
Cudacon ning						
Guageon pins						
Fit in piston ••	• •	• ••	••	••	••	•00025 in. (•0063 mm.) slack, to •00015 in. (•0038 mm.). tight.
Clearance in small-end	bush .	• ••	••	••	••	•0001 to •0005 in. (•0025 to •0127 mm.).
Connecting rods						
Length between centres						5.75 in. (146.05 mm.).
Side clearance on cranl	kshaft 🖬					•006 to -010 in. (152 to •254 mm.).
Crankshaft and bearings						
Lournal diamator						2.0005 to 2.001 in (50.012 to 50.025 mm)
Contrain diameter		• ••	••	••	••	2.0005 to 2.001 III. (50.815 to 50.825 100), 1.7505 to 1.7510 in (44.462 to 44.475 mm)
Main bearing alegran		• ••	••	••	••	1.7505 to 1.7510 III. (44.402 to 44.473 IIIII.).
Ris and hearing clearance	••••		••	••	••	001 to 0027 in. (-025 to 006 min.).
Big-end bearing clearan	nce .	• ••	••	••	• •	-001 to -0027 in. (025 to -006 mm.).
Cranksnalt end-float		• ••			••	•002 to •003 m. (•051 to •076 mm.).
Camshaft and bearings						
Bearing clearance						•001 to -002 in. (025 to -051 mm.).
Camshaft end-float						•003 to •007 in. (076 to •178 mm.).
Timing chains and wheels						
Camshaft drive						Dupley roller chain
Injection pump drive	•• •	• ••	••	••	••	Simplex roller chain
Injection pump chain s	vheel h	• • • •		••	••	Simplex tonet chain.
Inside diameter (fini	ched in	nosition)			1.75025 to 1.75075 in (AA A56 to 44.460 mm)
Clearance on hub	sheu III	Position	,	••	••	(1,1,5,0,2,5) to $(1,1,2,0,1,2,1,1)$ III. $(44,4,5,0,1,0,1,4,0,7,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1$
	••••••	• ••	••	••	••	VVI (U VV2 III. (-023 (U V31 IIIIII.).

GENERAL DATA - continued

Valve mechanism

Valve opens	with	• 020 in.	(508	mm.)	valve	rocker	clear-			
Valve closes	ance						• •			
Valve seat an	Igle	• •	••							
Valve seat fa	ce widt	th	• •							
Valve stem to guide clearance										
Valve rocker	Valve rocker clearance—cold									
Valve lift		••	••							
Valve stand-	down	• •								

Inlet	Exhaust
5° B.T.D.C.	45° B.B.D.C.
30" A.B.D.C.	S° A.T.D.C.
45"	45°
∙075 in. (1.906 mm.)	,075 in. (1•906 mm.)
•0015 to •0025 in.	•002 to •003 in.
(038 to •062 mm.)	(051 to •076 mm.)
•012 in. (305 mm.)	•012 in. (305 mm.)
•276 in. (7.01 mm.)	•276 in. (7.01 mm.)
•018 to •038 in.	•018 to •038 in.
(457 to •965 mm.)	(457 to •965 mm.)

1/2

Value and as						Inner	outer
Free length		•••			• •	1.672 in. (42.471 mm.)	2.047 in. (52 mm.)
Fitted length—valve of	nen	••	••	••	•••	•889 in. (22.576 mm.)	1.052 in. (26.746 mm.)
Load to compress to f	itted length	-valve	e open			28.7 lb. (13 kg.)	43 lb. (19.5 kg.)
Rocker shaft diameter		••	••	••	••	•3615 to •5625 in. (14.26)	3 to 14.288 mm.).
Tappet diameter		••	••		••	•81125 to •81175 in. (20.	606 to 20.618 mm.).
Flywheel and starter ring						04	
Starter ring fitting tempe	ter ring	••	••	••		94. 200 to 230" C (392 to A	46° F)
Starter ring ritting tempe	lature	••	••	••		200 10 230 °C. (3)2 10 4	, ,
Oil pump						000 : (0= (
Rotor end-float.	••	••	••	••	••	-003 in. (076 mm.) max	imum.
	••	••	••	••	••	-004 m. (102 mm.) max	11110111.
Oil pressure relief valve							
Spring free length		••	••	••	• •	2.86 in. (72·64 mm.).	
Spring fitted length	to fitted le	 noth	••	••	••	2.156 in. (54.77 mm.) .	
Load to compless spring		ngtn	• •	••	••	13.3 10. (0°127 kg.).	
Oil pressure							
Idling speed	• ••	••	••	••	• •	15 lb./sq. in. (1.05 kg./c	m. ²).
Normal running speed	••	••	••	••	••	50 10./sq. in. (3.52 kg./c	m).
COOLING SYSTEM							
Fan belt							
Depth						¥ in. (10.72 mm.)	
Width (outside)			••	•••		$\frac{1}{2}$ in. (12.7 mm.).	
Angle of 'V'		••	· ·	••	••	40°.	
Lateral movement (me	asured at th	e verti	cal run)	• •	1 In. (23 IIIII.).	
T1							
I nermostat						70 to 94" C (175 to 19	920 E)
Fully open temperature	 e		••			94 to 96" C. (201 to 20	5 F.).)5" F.).
							-
Water pump spindle							
Interference fit in hub						-0015 to -0028 in. (038	to -071 mm.).
Interference fit in vane		••				-001 to -0023 in. (-025	to •058 mm.).

GENERAL DATA — continued

FUEL SYSTEM							
Diesel models							
Liipump		••		••	••	••	A.C.—YE type.
Main filter		••	••	• •	••	••	C.A.V. bowl-less.
Injection order .			••	••	••		1, 3, 4, 2.
Static injection timi	ing	••	••	••	••	••	16° B.T.D.C.
Injection pump							
Туре				••	••	••	DPA 3248530.
Roller to roller d	imension			••	••		1-962 in. (49.84 mm.).
Governor link ler	ngth 💶		••	••	••		2.087±.039 in. (53%1 mm.).
Injectors							
Nozzle			••	••			BDN.O.SPC.6389.
Nozzle holder					••		BKB.35S.5237.
Opening pressure				••		••	135 atmospheres.
Needle lift	•••		••	••		••	•6 to •75 mm.

Torque Wrench Settings

Cylinder head nuts	60 ft.	lbs.
Injector clamp nuts	15 ft.	lbs.
Rocker bracket nuts	25 ft.	lbs.
Flywheel bolts	40 ft.	lbs.
Main bearing bolts	70 ft.	lbs.
Connecting rod bolts.	35 ft.	lbs.
Injector nozzle nuts	50 ft.	lbs.

Electrical System

Nominal voltage.	12 volts (negative ground)
Battery (NOT supplied with engine)	
Terminal voltage	12 volts
Recommended capacity	130 ampere hours
Generator	negative ground
Capacity.	14 amperes
Voltage	12 V.D.C.
Alternator (optional)	
Capacity.	55 amperes
Voltage	12 V. Ď. C.
-	

TRANSMISSIONS

Four-60 Gear Options

SAOD		Direct Drive
SA002		2:1 RG
SAOV		1.29:1 RG
		1.67:1 RG
		2:1 RG
SSL-13	• • • • • • • • • • • • • • • • • • • •	1.3:1 RG
SSL-20		2:1 RG

INSTALLATION

Page No. 10 FOREWORD **INSPECTION OF SHIPMENT** 10 FOUNDATION FOR ENGINE 10 **ENGINE BOLTS** 11 **PROPELLOR COUPLING** 11 ALIGNMENT 11 EXHAUST LINE INSTALLATION 11 ENGINE COOLING SYSTEM 12 FUEL PIPING 12 FUEL SUPPLY 12 CONTROLS 13 ELECTRICAL SYSTEM 14 PREWIRING AND OPTIONS 14 15 STARTING AID

INSTALLATION

1

FOREWORD

It is not the purpose of this section to advise boatyards and engine installers on the generally well understood and well developed procedures for installation of engines. However, the following outline of general procedure is included because it is valuable in explaining the functions of each component, the reasons why, the precautions to be watched and the relationship of the installation to the operation of the engine. There are details of the installation which should have a periodic check and of which the operator should have a thorough understanding to ensure good operating conditions for the engine and correct procedure in servicing the engine.

INSPECTION OF SHIPMENT

The engine is shipped from the factory mounted upon heavy skids and properly crated. Accessory equipment is shipped in a separate small box, usually packed with the engine crate. Immediately upon arrival, the shipment should be inspected for possible accidental damage in transit and for any possible shortage in parts and equipment. Before accepting any shipment from the transportation company, check with the packing list and if any shortage or damage is noted, file claim with the agent before accepting shipment, reporting same to the shipper.

FOUNDATION FOR ENGINE

A good engine bed contributes much towards the satisfactory operation of the engine. The engine bed must be of rigid construction and neither deflect or twist when subjected to the engine weight or the position the boat may have to take under the effects of rough seas. The bed must not only support the engine firmly in the exact position but must keep the engine within one or two thousandths of an inch of this position at all times. It has to withstand the forward push of the propeller which is applied to the propeller shaft, to the thrust washer bearing in the engine and finally to the engine bolts and engine bed.

In fiberglas hulls, we recommend that similar wooden stringers as in wooden hulls be formed and fitted, then glassed to the hull securely. This allows hanger bolts to be installed firmly in wood, thus reducing noise and transmitted vibration.

The temptation to install the engine on a pair of fiberglas "angle irons" should be resisted. Such construction will allow engine vibrations to pass through to the hull. Flexible mounts require a firm foundation against which to react if they are to do their job. When possible, follow bed design "A" and avoid bed design "B".

Fig. 1. Bed Design A and B

ENGINE BOLTS

It is recommended—that 3/8 inch lag bolts (hanger bolts), preferably of bronze, be used through the engine supporting mounts. Lag screws are less preferred because their hold on the wood is weakened every time they are moved, whereas the lag bolt stays in position and the nuts on top of the lag bolts are used to tighten the engine down or are loosened to permit the engine to be moved. The bolt itself stays in position at all times as a stud and the bond between the bolt and the wood is not weakened by its removal.

PROPELLER COUPLING

Each Westerbeke Diesel engine is fitted with a suitable coupling for connecting the propeller shaft to the engine. The coupling is very carefully machined for accurate fit. The forward end of the propeller shaft has a long, straight keyway and any burrs should be removed from this end. The coupling should be a light drive fit on the shaft and the shaft should not have to be scraped down or filed in order to get a fit. It is important that the key be properly fitted both to the shaft and the coupling.

If it seems difficult to fit the coupling over the shaft, the **coupling** can be expanded by heating in a pail of boiling water. The face of the propeller coupling must be exactly perpendicular to the center line or axis of the propeller shaft.

ALIGNMENT

When making the alignment between the engine and propeller shaft half couplings. take plenty of time and do not be satisfied with anything less than perfect results. The alignment is correct when the shaft can be slipped backwards and forward into the counter-bore with no interference and when a feeler gauge indicates that the flanges come together at all points. The two halves of the coupling should be parallel within 0.001 inch if possible. However, the maximum allowable tolerance must not exceed 0.001 inch per inch of coupling **O**. D. In making the final check for alignment, the engine half coupling should be held in one position and the **align**ment with the propeller half coupling checked in each of four positions 90 degrees apart. Keeping the propeller **coupling** in one position, the alignment should be checked by rotating the engine shaft half coupling in each of four positions 90 degrees apart.

If initial alignment is accomplished during boat construction or while the boat is still on its cradle, the coupling should be disconnected and **all** alignment rechecked shortly **after** launching.

The engine alignment should be re-checked after the boat has been in service for one to three weeks, and if necessary, the alignment re-made. It will usually be found that the engine is no longer in alignment. This is not because the work was improperly done at first, but because the boat has taken some time to take its final shape and the engine bed has probably absorbed some moisture.

NOTE: A fiberglas boat requires the same "Alignment" procedures above as wood or any other material used in boat construction.

EXHAUST LINE INSTALLATION

Exhaust line installations vary considerably and each must be designed for the particular job. Four particular cautions apply:

1. The exhaust line must be designed so that sea water or engine raw water discharge cannot possibly run back into the engine.

- 2. The exhaust line should be supported so that its weight does not rest on the manifold flange.
- 3. Use a flexible section **preferably** of stainless steel at the manifold flange (which should be wrapped due to the high temperature) and no less than 12 inches overall length, threaded at each end.
- 4. The exhaust pipe must be of **sufficient** size to handle the **exhaust** gases from the engine properly and should never be made **smaller** than the opening of the exhaust manifold. The I.D. of the exhaust should be increased 1/2 inch for every ten feet of length beyond the first ten.

ENGINE COOLING SYSTEM

The Westerbeke Four-60 diesel is fresh water cooled, utilizing what is known as a "closed system", wherein the fresh water is circulated by a centrifugal pump through the engine block and head, exhaust manifold, and heat exchanger. The heat exchanger is cooled by the sea water pump.

FUEL PIPING

We recommend 1/4 inch O. D. copper tubing together with suitable fittings, both for the supply line and return line. Run the tubing in the longest pieces obtainable to avoid the use of unnecessary fittings and connectors. The shut off valve in the line between the fuel tank and engine should be of the fuel oil type, and it is important that all joints be free of pressure leaks.

Keep fuel lines as far as possible from exhaust pipe for minimum temperature to eliminate "vapor lock."

The fuel piping leading from the tank to the engine compartment should always be securely anchored to prevent chafing. Usually the copper tubing is secured by means of copper straps.

The final connection to the engine should be through the flexible rubber hoses supplied.

FUEL SUPPLY (see Fig. 2 for Fuel injection Pump lever control positions)

To ensure satisfactory operation, a **Diesel** engine must have a dependable supply of clean fuel oil. For this reason, cleanliness and care are especially important at the time when the fuel tank is installed because dirt left anywhere in the fuel lines or tank will certainly cause fouling of injector nozzles when the engine is started for the first time. If a molded tank of fiberglas is used, be certain that the interior is.gel-coated to prevent fibres from contaminating the fuel system.

In the Westerbeke Diesel fuel system, an excess of fuel oil is supplied to the injection pump by a fuel lift pump and the oversupply which is not required for injection to the engine is returned to the fuel tank.

Two fuel filters are provided with the engine; one is an integral part of the fuel lift pump (called the Primary Filter), the other mounted on the engine (called the Secondary Filter). The Primary Unit has a bowl and screen, the purpose of which is to trap water and has the advantage that the owner can tell at a glance if water or dirt is collecting in the glass bowl. The Secondary Filter is a replacement element type, the purpose of which is to filter all contaminants before the fuel oil reaches the injection system. Connection for the fuel supply line is on the fuel lift pump which has a hand primer required for filling the fuel supply lines and the filters, and for purging the system of air when engine is started for the first time, or whenever the system has been opened for any reason.

Fig. 2 Fuel Injection Pump Throttle and **STOP/RUN** Lever Control Positions

NOTE: The fuel injection pump Fuel Stop Control lever should be spring loaded to the **run position**.

CONTROLS

If manual SAO transmission is used, clutch control may be either Morse type MJ or conventional rod and lever assembly. Type SAO transmissions normally require 25 pounds of effort on the clutch handle or 75 pounds if Morse type cable is connected at the point four inches from the cross shaft. (75 pounds @ 4 inches is reduced again to 25 pounds at the operating station through the leverage ratio of the Morse MJ mechanism.) Whether flexible cable or rod and levers are used, it is imperative that installation be done precisely and in a workmanlike manner. Cable bends must be gradual. Anchor points must be securely fixed to rigid member- so that effort put into the clutch handle reaches the clutch cross shaft without lost motion. With rod and lever installations. it is desirable to maintain balance among the several members so that the weight of components does not tend, of itself, to pull the clutch lever from neutral position towards either "Ahead" or "Astern".

SSL Transmission may be used; it is highly efficient, simple in design, and is ideally suited to control by the Model ML Morse single lever control. The necessary cable ends and attaching kits we have designed for this unit are on our list of accessories. (The control and cables should be purchased locally through Morse dealers.) In addition to the throttle and clutch function handled by the ML control, there is also a stop-run lever. These are most easily controlled by Bowdoin wires which should be mounted adjacent to the starter button.

SAO Transmissions require Left-Hand Propellers SSL Transmissions require Right-Hand Propellers

ELECTRICAL SYSTEM

All electrical accessories on a standard production Westerbeke Four-60 Diesel Engine operate on a negative grounded 12 volt system. Included with the engine is a 14-ampere generator mounted to the engine. Shown in Fig. 3, is a wiring diagram for a generator and skipper panel, or Fig. 4, a wiring diagram for an optional 55-ampere alternator and Westerbeke All Electric panel.

Carefully follow the recommended wire size shown in the wiring diagrams. Plan the installation so the battery is close to the engine and use battery cable sizes as follows:

#1 -- for distances up to 8 feet

#1/0 -- for distances up to 10 feet

#2/0 - - for distances up to 13 feet

#3/0 - for distances up to 16 feet

PREWIRING AND OPTIONS

1. Prewiring

Prewiring includes the installation and wiring of the following devices: alternator, regulator, starting motor, starter solenoid, instrument senders, connecting terminal blocks, pressure and temperature switches, separate key switch panel including the pre-heat function. The cable used to connect the engine and its key switch panel is neoprene jacketed, waterproof, very flexible and meets ABYC standards. This cable includes two #10 conductors for the pre-heat function and two #6 conductors for the ammeter. Chief advantages are pre-wiring will be elimination of wiring mistakes and minimum installation time. The cables are 10 foot lengths to accommodate all installations.

2. All Electric Panel

The Westerbeke all electric panel utilizes an electronic tachometer with a built-in hour meter. Tachometer cables are no longer required. The panel is anodized aluminum, eopxy paint protected, for long lived finish. The marine instruments are an ammeter, water temperature gauge and oil pressure gauge and each instrument is back lighted. This new all electric panel is isolated from ground and may be used with negative ground, positive ground, or isolated ground electrical systems. and may be mounted where visible. It must be used with the 55-amp alternator.

3. Factory Installed Engine Alarm System (Optional)

This alarm system, to indicate the existence of high water temperature or low oil pressure, is designed and installed on your Westerbeke diesel at the factory. It consists of an audible alarm to indicate either failure, the alarm being Part of the key switch panel. The high water temperature and low oil pressure switches are set for compatibility with the engine. The alarm system is energized by the key switch at the key switch panel and can be de-energized by the same key switch, should the operator wish to turn off the alarm.

Fig. 3 Wiring Diagram with Generator and Skipper Panel

Fig. 4 Wiring Diagram with Alternator and Electric Panel

STARTING AID (Fig. 5)

The starting aid on Westerbeke Four-60 consists of a combustion chamber glow plug preheater which operates by heating the air coming into the combustion chamber. Due to the drop in battery voltage from 12 volts to 9 volts-during an engine cranking, four 9-volt glow plugs are used to provide full preheat power during cranking. A resistor is used in the glow plug circuit to prevent burnout of the glow plugs when preheat is used without cranking the engine. A start solenoid is provided in the circuit to bypass this resistor and connect the glow plugs directly across the battery while cranking.

It is most important that the glow plug circuit be wired correctly to prevent burnout of the glow plugs and provide battery charging.

To start the engine, depress the glow plug PRE-HEAT pushbutton for 30 seconds or longer (depending upon climatic conditions), and then engage the START switch. Both pushbutton and START switches should be released when the engine cranks. If after about 15 seconds cranking time the engine has not started, stop cranking for 15 seconds leaving the PRE-HEAT pushbutton depressed and then engage START switch.

Fig. 5. Starting Aid - Glow Plug Preheat

OPERATION

Page No.

PREPARATION FOR STARTING ENGINE AFTER INSTALLATION	19
BLEEDING THE FUEL SYSTEM	19
TO START ENGINE	20
WHEN ENGINE STARTS	20
TO STOP ENGINE	21
OPERATING PRECAUTIONS	21
COLD WEATHER PRECAUTIONS	22
POST DELIVERY CHECKOUT	22
MAINTENANCE SCHEDULE	23
END OF SEASON SERVICE	23

LUBRICATING OILS

Lubricating oils are available for Westerbeke Diesel engines which offer an improved standard of performance to meet the requirements of modern operating conditions such as sustained high speeds and temperatures.

These oils meet the requirements of the U.S. Ordnance Specification MIL-L-2104B (API Service CC). Any other oils which also conform to these specifications, but are not listed here are, of course, also suitable.

COMPANY	BRAND	S.A.E. DESIGNATION 0°745°F 45°780°F OVER 8				
American Oil Co.	American Supermil Motor Oil	10W	20W/20	30		
BP Canada Limited	BP Vanellus BP Vanellus	10W 10W/30	20W/20 10W/30	1010/30		
Chevron Oil Co.	RPM DELO Multi-Service Oil	10W	20W/20	30		
Cities Service 011 Co.	CITGO Extra Range	10W	20W/20	30		
Continental 0il Co.	CONOCO TRACON OIL	10W	20W/20	30		
Gulf Oil Corporation	Gulflube Motor Oil X.H.D.	NOL	20W/20	30		
Mobile Oil Company	Delvac 1200 Series	1210	1220	1230		
Shell Oil Company	Shell Rotella T Oil	том	20W/20	30		
Sun 0il Company	Sunfleet MIL-B	10W	20W/20	30		
Texaco, Inc.	Ursa Oil Extra Duty	10W	20W/20	30		

OPERATION

PREPARATION FOR STARTING ENGINE AFTER INSTALLATION

The engine is shipped "dry", that is, with lubricating oil drained from the crankcase and transmission. The following procedure should be checked **methodically** before starting the engine for the first time.

 Remove oil filler cap and fill oil sump with approximately 4.5 U.S. quarts of diesel lubricating oil to the highest mark on the dipstick., Refer to page 18 for an approved lubricating oil. Do not over fill. Select an approved grade listed and continue to use it.

NOTE: Due to the inclination of engine and transmission in the boat, more oil may be required than specified.

- 2. Remove reverse gear breather cap on SAO gear or dipstick on SSL gear and fill with S.A.E. 30 lubricating oil to high mark on dipstick. Do not over fill.
- 3. Fill fresh water cooling system as follows:
 - a. Remove the square head vent screw top of heat exchanger.
 - b. Remove surge tank filler cap and fill the tank (integral with exhaust manifold) with fresh, clean water and/or anti-freeze (refer to Cold Weather Precautions) and when coolant free of air bubbles issues from the vent point, replace and tighten vent screw.
 - c. Fill surge tank to within one inch of top of tank. Replace filler cap.
- 4. Ensure storage battery water level is at least 3/8 inch above the battery plates and battery is fully charged so that it is capable of the extra effort that may be required on the first start.
- 5. Fill fuel tank with clean Diesel fuel oil; No. 2 diesel fuel oil is recommended. The use of No. 1 is permissible but No. 2 is preferred because of its higher lubricant content.

NOTE: If there is no filter in the filler of the fuel tank, the recommended procedure is to pour the fuel through a funnel of 200 mesh wire screen.

- 6. Fill grease cup on water pump with a good grade of water pump grease.
- 7. Open valves in fuel line and bleed fuel system .(refer to Bleeding the Fuel System).

BLEEDING THE FUEL SYSTEM

One possible cause of failure to start, or erratic engine performances is that air may have entered the system, in which case "bleeding" of the system will be necessary.

Before bleeding the system, first ensure that there is an adequate supply of fuel in the tank and that the fuel supply is turned on.

1. Slacken the banjo bolt securing the injectors "fuel return pipe banjo" to secondary fuel filterhead. Operate the priming lever on the lift pump, and when fuel issues from the banjo bolt free of air bubbles, tighten bolt.

NOTE: It will not be possible to operate the lift pump hand priming lever if the cam on the camshaft driving the fuel lift pump is on maximum lift. If such a condition arises operate the cranking motor until the hand primer lever can be used.

- 2. Slacken the air bleed screw on the fuel injection pump, situated directly above the pump nameplate. Operate the lift pump priming lever, and when fuel flows from the bleed screw free of air bubbles, tighten the bleed screw.
- 3. Slacken the union nuts at injector end of each of the high pressure pipes (pipes going from the injection pump to each of the four injectors).
- 4. Position shift lever in neutral.
- 5. Ensure fuel STOP push-pull control is in full run position. (Push in to run.)
- 6. Advance throttle to maximum open position. (For maximum fuel flow.)
- 7. Turn key switch to START position, and when fuel oil free of air bubbles issues from each injector pipe union, tighten union.

TO START ENGINE

- 1. Position shift lever to neutral.
- 2, Push fuel stop control into full RUN position.
- 3. Advance throttle to maximum (to obtain maximum fuel for easier starting).
- 4. Depress PRE-HEAT pushbutton for approximately 30 seconds or longer, depending on climatic conditions.
- 5. Turn key switch to START position and hold. Release when engine starts.
- 6. Immediately upon starting, position throttle to idle setting.

NOTE: Never operate the cranking motor continuously for more than 15 seconds. If engine has not started, stop cranking for 15 seconds leaving the PRE-HEAT pushbutton depressed and turn switch to START position. The engine should start within a few revolutions of the crankshaft if battery is charged and the engine is getting fuel. The cranking motor turning over fast indicates the battery is charged. If battery is charged and engine doesn't start, check fuel system as follows:

- a. Ensure the fuel valve between tank and engine is open.
- b. Ensure the fuel STOP/RUN control lever is in the full RUN position at the stop control lever on the injection pump.
- c. Check for leaks in fuel lines and at gaskets of fuel filters.
- d. Determine if fuel is reaching injectors by performing procedures 3 to 7, 'Bleeding Fuel System". If fuel oil doesn't issue from union nuts at injectors, bleed complete system.

WHEN ENGINE STARTS

- 1. Check Oil Pressure immediately. Normal oil pressure is approximately 50 psi at operating speeds, 15 psi when idling. (Extremely hot ingine.)
- 2. Check Sea Water Flow. Look for water at exhaust outlet. Do this without delay.
- 3. Recheck Crankcase Oil. After the engine has run for 3 or 4 minutes, subsequent to an oil change or new installation, stop the engine and check the crankcase oil level. This is important as it may be necessary to add oil to compensate for the oil that is required to fill the engine's internal oil passages and oil filter. Add oil as necessary. Check oil level each day of operation.
- 4. Recheck Transmission Oil Level. (This applies only subsequent to an oil change or a new installation.) In such a case, stop the engine after running for several minutes at 800 rpm with one shift into forward and one into reverse, then add oil as necessary. Check oil level each day of operation.

7

5. Recheck Expansion Tank Water Level. (This applies after cooling system has been drained or filled for the first time.) Stop engine after engine has reached operating temperature of 175°F and add water to within one inch of top of tank.

WARNING: The system is pressurized when overheated and the pressure must be released gradually if the filler cap is to be removed. It is advisable to protect the hands against escaping steam and turn the cap slowly counter-clockwise until the resistance of the safety stops is felt. Leave the cap in this position until **all** pressure is released. Press the cap downwards against the spring to clear the safety stops, and continue turning until it can be lifted off.

- 6. Warm-up Instructions. As soon as possible, get the boat underway but at reduced speed of 800-900 rpm, until oil pressure gauge indicates approximately 50 psi and water temperature gauge indicates 130-150°F. If necessary, engine can be warmed up, with the clutch in neutral at 1000 rpm. Warming up with clutch in neutral takes longer and tends to overheat the transmission, if partial engagement occurs, which can be detected by propeller shaft rotation.
- 7. Prolonged idling. When required to run engine at idle speed of 600 rpm for a prolonged time, increase speed to 1000 rpm for at least three minutes every half hour to accelerate oil circulation and thus to eliminate conditions favorable to sludge and carbon formation.
- 8. Reverse Operation. Always reduce engine to idle speed when shifting gears. However, when the transmission is engaged, it will carry full engine load.

NOTE: The SAO transmission requires that when backing down, the shift lever must be firmly held in the reverse position since it has no positive overcenter locking mechanism.

TO STOP ENGINE

- 1. Position shift lever in neutral.
- 2 Move throttle lever to idle position.
- 3. Pull fuel push-pull STOP control out. (The stop control functions by cutting off the fuel from the fuel injection pump.)
- NOTE: Idle engine for a few minutes to dissipate heat 'gradually before shutdown.

OPERATING PRECAUTIONS

- 1. Never run engine for extended periods when excessive overheating occurs as extensive internal damage can be caused.
- 2. Do Not Put Cold Water in an overheated engine. It can crack cylinder head, block, or manifold.
- 3. Keep intake silencer free from lint, etc.
- 4. Do not run engine at high RPM without clutch engaged.
- 5. Never Race a Cold Engine as internal damage can occur due to lack of improper oil circulation.
- 6. Keep the engine and accessories clean.
- 7. Keep the fuel clean. Handle it with extreme care because water and dirt in fuel cause more trouble and service interruptions than any other factor.
- 8. Do not allow fuel to run low, because fuel intake may be uncovered long enough to allow air to enter the fuel system, resulting in engine stoppage.

9. Do not be alarmed if temperature gauges show a high reading following a sudden stop after engine has been operating at full load. This is caused by the release of residual heat from the heavy metal masses near the combustion chamber. Prevention for this is to run engine at idle for a short period before stopping it. High temperature reading after a stop does not necessarily signal alarm against restarting. If there is no func-tional difficulty, temperatures wili quickly return to normal when engine is operating.

. |

COLD WEATHER PRECAUTIONS

- 1. Precautions against damage by freezing should be taken if the engine is to be left exposed to inclement weather by adding an anti-freeze of reputable make and incorporating a suitable corrosion inhibitor. As these engines are equipped with high temperature thermostats, a permanent type antifreeze with an.Ethylene Glycol Base should be used.
- 2. Draining Cooling System. Remove the pressure cap from the expansion tank and open the petcock (turn counterclockwise) near the flywheel housing on the fuel hand pump side of the cylinder block.
- 3. Bleed Cooling System. When filling the cooling system with the correct amount of anti-freeze and/or water for the degree of protection required, remove the square head vent screw on top of the heat exchanger, and when coolant free of air bubbles issues from this vent point, replace and tighten vent screw. Fill the expansion tank to within one inch from top of tank. Start engine and run engine for 3 or 4 minutes. Stop engine and add coolant as necessary.

NOTE: The strength of the anti-freeze solution must be maintained by topping off with the solution as necessary.

4. Fuel filters must be checked more often, particularly the primary filter (glass bowl, water trap, and screen) to remove all the moisture and condensation separated from the fuel, otherwise this may freeze and stop the fuel flow.

POST DELIVERY CHECKOUT

After a customer has taken delivery of his engine, it is advisable in his own interest, that a general check-over of the engine be carried out after the first 50 hours in service.

- 1. Retorque the cylinder head bolts (refer to Section A. 8, Par. 34 b).
- 2. Retorque the rocker bracket nuts and adjust the valve rocker clearance (refer to Section A. 7, Par. 15 a and b).
- 3. Check and adjust if necessary forward drum assembly and reverse band on manual SAO type transmissions. (No adjustment required on the SSL transmission.)
- 4. Change engine lubricating oil and oil filter.
- 5. Check for fuel and lubricating oil leaks, and rectify if necessary.
- 6. Check cooling system for leaks and inspect water level.
- 7. Check for loose fittings, clamps, connections, nuts, bolts, vee belt tensions, $e t \sim .$ (paying particular attention to loose engine mount fittings

which could cause mis-alignment and subsequent problems.)

MAINTENANCE SCHEDULE

DAILY

- 1. Check sea water strainer, if one has been installed.
- 2. Check water level in cooling system.
- 3. Check lubricating oil level in sump, fill to highest mark on dipstick.
- 4. Turn down grease cup on water pump one firm turn.
- 5. Check lubricating oil level in transmission, fill to high mark on dipstick.

EVERY 50 HOURS

- 1. Check generator or alternator "V" belt for tension.
- 2. Check water level in battery.

EVERY 100 HOURS

- 1. Change oil in sump. Oil may be sucked out of the sump by attaching a suction hose of 3/8 inch I. D. over the outside of the oil sump pipe, located aft of the dipstick.
- 2. Replace lubricating oil filter.
- 3. Fill sump with approximately 4.5 U.S. quarts of diesel lubricating oil to high mark on dipstick. Do not over fill. Refer to page 18 for an approved lubricating oil and continue to use it.

CAUTION: The use of different brands of lubricating oils during oil changes has been known to cause extensive oil sludging and may in many instances cause complete oil starvation.

- 4. Start engine and run for 3 or 4 minutes. Stop engine and check oil filter gasket for leaks. Check oil sump level. This is important as it may be necessary to add oil to compensate for the oil that is required to fill the engine's internal oil passages and oil filter. Add oil as necessary.
- 5. Change oil in transmission. Use SAE 30, High Detergent Lubricating Oil, Service DG, DM, or DS. Do not overfill.
- 6. Clean Air Filter.

NOTE: The time period for replacing the air filter depends on operating conditions, therefore, under extremely dirty conditions, the time limits of 250 hours should be decreased. The correct time periods for replacing the filter will greatly assist in reducing bore wear, thereby extending the life of the engine.

EVERY 150 HOURS

- 1. Check engine for loose bolts, nuts, etc.
- 2. Check sea water pump for leaks.

EVERY 250 HOURS

- 1. Wash primary filter bowl and screen. If filter bowl contains water or sediment, filter bowl and secondary oil fuel filter need to be cleaned more frequently.
- 2. Replace secondary fuel filter element.
- 3. Replace air filter.

END OF SEASON SERVICE

When a craft is to be taken out of service for the winter, it is advisable that some measure of protection be afforded the engine.

It is recommended, therefore, that the following procedures be applied immediately after the unit is withdrawn from service:

- 1. Drain fresh water cooling system by removing the surge tank pressure cap and opening the petcock (turn counter-clockwise) near the flywheel housing on the fuel hand pump side of cylinder block.
- 2 Remove the hex screw plug on port under side of heat exchange and determine if zinc rod in plug needs replacing. The zinc rod will take care of any electrolysis that may occur between brass .and iron components. Insert new zinc rod in plug if necessary and replace plug.
- 3. Fill fresh water cooling system with antifreeze of a reputable make. (Refer to Cold Weather Precautions.)
- 4. Start engine. When temperature gauge indicates 175°F, shut engine down and drain lubricating oil. Remove and replace filter. Replace drain plug and fill sump with High Detergent Lubricating Oil.
- 5. Remove air filter. Carefully seal air intake opening with waterproofed adhesive tape or some other suitable medium.
- 6. Seal the exhaust outlet at the most accessible location as close to the engine as possible.
- 7. Remove injectors and spray into cylinder bores 1/8 pint of lubricating oil divided between the cylinders.
- 8. Replace injectors with new sealing washer under each injector. Turn engine slowly over compression.
- 9. Top off fuel tank completely so that no air space remains, thereby preventing water formation by condensation.
- 10. Leave fuel system full of fuel just as it was on completion of step (4) above.
- 11. Change fuel filters before putting the engine back in service.
- 12. Wipe engine with a coat of oil or grease.
- 13. Change oil in transmission.
- 14. Disconnect battery and store in fully charged condition. Before storing the battery, the battery terminals and cable connectors should be treated to prevent corrosion. Recharge battery every 30 days.

Fig. B2. The Filler Cap Showing One of the Safety Stops

Fig. B3. The Cylinder Block Drain Tap. Turn the tap in the direction of the arrow to open

.

SECTION A

DIESEL ENGINE

											Section
Camshaft	••	•••	•••			••	••	••	••	••	A.9
Camshaft bearing liners	s	••		•-		••			••		A.16
Connecting rods	••	••	•••			•••				••	A.12
Crankshaft	••					••		••			A.11
Cylinder head		••			••		••			••	A8
Cylinder liners						••				••	A.17
Engine back plate			••							••	A.10
Engine front plate		••								••	A9
Flywheel											A.10
Lubrication system											A.2
Oil filter-external									••		A.3
Oil pressure relief valve	e		••								A.5
Ci . pump		••									A.4
Oi pump drive											A.6
Oil strainer								••			A.11
Pistons		••	• •					••			A.12
Sump			••								A.11
Tappets								. ,			A.7
Timing chains						••	• ·				A.9
Timing chain tensioner	rs				••						A.9
Timing chain wheels		••	••			••		••			.A.9
Tractometer drive			••			••					A.6
Valves			••	••	••		••		••		A.8
Valve rocker clearance	adjust	ting		••		••			••		A.13
Valve rocker shaft					••	••			••		A.7
Valve seat recondition	ing		••	••		••	••				A.15
Valve timing check	••		••			••		••	••	••	A.14

[

S	Description	 Main bearing cap—front. 	I. Oil seal for front main bearing cap.	i. Dowel for main bearing cap.	5. Bolt for main bearing cap.	'. Lock washer for bolt.	Front plate for engine.	 Joint washer for front plate.). Joint washer for top fixing hole of front plate.	. Timing indicator for injection pump.	2. Timing cover.	 Joint washer for timing cover. 	 Vibration damper-camshaft chain. 	5. Bolt for vibration damper.	Lock washer for bolt.	7. Vibration damper—injection pump chain.	3. Stud for vibration damper.	Nut for stud.). Lock washer for nut.	l. Bolt for timing cover.	2. Nut for bolt.	3. Washer for nut.	 Cover for injection pump chain wheel. 	5. Setscrew for cover.	Spring washer for setscrew.	7. Oil filter.	3. Joint washer for filter.). Bolt for filter.	 Spring washer for bolt. 	I. Adaptor for filter.	2. Joint washer for adaptor.	3. Bolt for adaptor.	 Spring washer for bolt. 	5. Oil seal-timing cover.	Joint washer for chain wheel cover.	7. 'O' ring for oil suction drilling.	
HUT!	No.	73	74	. 75	76	11	78	79	8	81	8	83	84	85	86	87	88	89	8	91	92	66	94	95	96	6	86	<u>6</u>	201	101	102	103	9	105	õ	107	
THE ENGINE EXTERNAL COMPON	Description	. Oil seal for crankshaft-rear.	. Housing for oil seal.	. Setscrew for housing.	 Lock washer for setscrew. 	. Oil release valve.	. Spring for valve.	. Cap nut for valve.	. Washer for cap nut.	. Cylinder head.	i. Joint washer for cylinder head.	. Combustion chamber insert.	 Stud for cylinder head. 	. Nut for stud.). Washer for nut.	. Cylinder block.	. Cylinder liner.	 Side cover for cylinder block. 	. Joint washer for side cover.	i. Bolt for side cover.	 Washer for bolt. 	. Oil reservoir.	. Joint washer for reservoir.	 Stud for reservoir. 	. Nut for stud.	. Spring washer for nut.	. Bolt for reservoir.	 Spring washer for bolt. 	 Drain plug for reservoir. 	 Copper washer for plug. 	5. Oil dipper rod.	 Blanking plate—oil suction drilling. 	 Joint washer for plate.). Bolt for plate.). Lock washer for bolt.	. Main bearing cap-rear.	. Main bearing cap-centre.
Y TO	No.	37	38	39	4	41	4	43	4	45	46	47	48	49	50	51	52	53	54	52	56	57	58	59	99	61	63	63	3	65	66	67	68	69	70	71	CL
KE	Vo. Description	1 Clamp for injector.	2. Stud for clamp.	3. Nut for stud.	4. Washer for nut.	5. Heat shield for injector nozzle.	6. Washer for heat shield.	7. Water outlet elbow.	8. Joint washer for elbow.	9. Stud for elbow.	10. Nut for stud.	11. Washer for nut.	12. Thermostat.	13. Oil filter cap.	14. Cap nut for rocker cover.	15. Cup washer.	16. Rubber bush.	17. Valve rocker cover.	18. Joint washer for rocker cover.	19. Exhaust manifold.	20. Intet manifold.	21. Joint washer for manifolds.	22. Stud for manifolds.	23. Washer for stud.	24. Stud for manifolds.	25. Nut for stud.	26. Washer for nut.	27. Yoke for manifolds.	Vent pipe for rocker cover.	29. Bracket for vent pipe.	30. Hose for vent pipe.	31. Back plate for engine.	32. Dowel for back plate.	33. Joint washer for back plate.	34. 'O' ring for back plate.	35. Setscrew for back plate.	36. Spring washer for setscrew.
	~	•																																			

A

KEY TO THE ENGINE INTERNAL COMPONENTS

Valve rocker.

Split pin for rocker shaft.

Plain washer for rocker shaft.

Spring washer for rocker shaft.

Rocker shaft bracket-tapped.

Locating screw for rocker shaft.

Plate for rocker shah bracket.

Rocker shaft bracket—plain.

Screwed plug for rocker shaft.

Locknut for adjusting screw.

Valve spring cup-bottom.

Valve spring collar — top.

Connecting rod—Nos. 1 and 3.

Connecting rod-Nos. 2 and 4.

Compression ring-top groove.

Compression ring-2nd and 3rd grooves.

Bolt for connecting rod cap.

Spring for rocker shalt.

Tappet adjusting screw.

Valve guide--exhaust.

Valve guide-inlet.

Valve spring — outer.

24. Spring clip for valve cotter.

Cap for connecting rod.

Lock washer for bolt.

Scraper ring--slotted.

Tractometer drive housing.

Big-end bearing.

Small-end bush.

Gudgeon pin.

Oil seal for valve.

Valve rocker shaft.

Valve--exhaust.

Valve-inlet.

Valve cotter.

Tappet.

Piston.

Circlip.

Push-rod.

No.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

35.

37.

38.

39.

40.

Description

Description

41. Bolt for housing.

No.

- 42. Spring washer for bolt.
- 43. Gasket for housing.
- 44. Tractometer and oil pump drive shaft.
- 45. Seal for shaft.
- 46. Oil pump **body**.
- 47. Gasket for oil pump.
- 48. Oil pump rotor and shaft assembly.
- 49. Oil pump cover.
- **50. 'O'** ring for cover.
- 51. Screw for cover.
- **52.** Bolt for oil pump.
- **53.** Spring washer for bolt.
- 54. Crankshaft.
- 55. Main bearing.
- 56. Thrust washer for crankshaft.
- 57. Dowel—flywheel to crankshaft.
- 58. Ball race.
- 59. Flywheel.
- 60. Bolt-flywheel to crankshaft.
- **61.** Lock washer for bolt.
- 62. Dowel--clutch to flywheel.
- **63.** Key for crankshaft.
- 64. Crankshaft chain wheel-camshaft drive.
- 65. Shim for chain wheel.
- **66.** Crankshaft chain wheel—injection pump drive.
- 67. Shim for chain wheel.
- **68.** Oil thrower.
- **69.** Timing disc.
- 70. Bolt for dics.
- **71.** Spring washer for bolt.
- 72. Crankshaft pulley---dynamo drive.
- **73.** Crankshaft pulley hydraulic pump drive.
- 74. Bolt for hydraulic drive pulley.
- **75.** Spring washer for bolt.
- **76.** Starting nut.
- 77. Lock washer for starting nut.
- 78. Camshaft.
- 79. Camshaft hearing liner front.
- 80. Camshaft bearing liner--centre.

Description

- 81. Camshaft bearing liner-rear.
- 82. Locating plate for camshaft.
- 83. Bolt for locating plate.
- 84. Shakeproof washer for bolt.
- 85. Key for camshaft.
- 86. Camshaft chain wheel.
- 87. Nut for camshaft.
- 88. Lock washer for nut.
- 89. Chain--camshaft drive.
- 90. Hub for injection pump chain wheel.
- 91. Bolt for hub.

No.

- 92. Joint washer for hub.
- 93. Injection pump chain wheel.
- 94. Bearing liner for chain wheel.
- 95. Locating plate for chain wheel.
- 96. Driving flange for chain wheel.
- 97. Bolt for driving flange.
- 98. Spring washer for bolt.
- 99. Chain—injection pump drive.
- **100.** Chain tensioner body amshaft drive.
- 101. Chain tensioner cylinder.
- **102.** Chain tensioner **spring**.
- 103. Chain tensioner slipper head.
- **104.** Chain tensioner back plate.
- 105. Joint washer for chain tensioner.
- 106. Bolt for chain tensioner.
- **107.** Lock washer for bolt.
- 108. Chain tensioner body-injection pump drive.
- **109.** Chain tensioner cylinder.
- 110. Chain tensioner spring.
- 111. Chain tensioner slipper head.
- **112.** Chain tensioner back plate.
- **113.** Joint washer for chain tensioner.
- 114. Packing block for chain tensioner.
- **115.** Joint washer for packing block.
- **116.** Bolt for chain tensioner.
- 117. Lock washer for bolt.
- 118. Oil pipe.
- 119. Banjo bolt.
- 120. Washer for banjo bolt.
- 20. Washer for Danjo Don.

EXTERNAL OIL FILTER

The external filter is of the full-flow **type**, thus **ensuring** that **all** oil in the lubrication circuit **passes** through the filter before reaching the bearings.

Oil is passed through the **filter** from **the** pump at a pressure controlled at 50 **lb./sq.** in. (3.5 kg./cm.³) by the engine oil pressure **release** valve.

Should the filter become completely choked due to neglect, a balance valve is provided to **ensure** that oil will still reach the bearings.

The filter element is removed by unscrewing the case from its base. A small **amount** of **spill**age will occur when this is done and a small waste container should be held underneath **as** the element is unscrewed.

Section A.2

LUBRICATION SYSTEM

The oil supply is carried in the sump **and** is replenished through a **filler** aperture in the valve rocker cover.

An eccentric-rotor type oil pump, mounted externally on the left-hand side of the crankcase, is **shaft**driven by means of a skew gear on the camshaft. The oil pressure (see '**GENERAL** DATA') is controlled by the pressure relief valve fitted in the right-hand side of the crankcase.

In operation, the oil is drawn through a gauze strainer in the sump and reaches the oil pump via drilled passages **in** the sump and crankcase. The oil passes from the pump to the full-flow filter on the opposite side of the crankcase through a drilling. This same drilling connects with the pressure relief **valve**.

After passing through the filter the oil enters the main gallery on the right-hand side of the crankcase and is fed to the crankshaft main bearings by branch drillings. The big-end bearings are lubricated from the **main** bearings through the crankshaft, and a hole in each big-end feeds oil to the thrust side of the cylinder bores.

Oil is fed to the camshaft bearings through passages from the main bearings. A passage from the camshaft centre bearing feeds oil to the camshaft skew gear and a drilling from the camshaft front bearing supplies oil to the cylinder head where further drillings lead to the rocker shaft via the front rocker support bracket. The oil from the rocker gear drains down the push-rod **tunnels** to the sump.

At the front of the main gallery, oil is fed to the camshaft chain tensioner and the injection pump chain wheel bearing. An oil pipe from the chain wheel hub feeds the injection pump chain tensioner.

Fig. A.2

Removing the oilpressure relief valve with tool 18G 69

Section A.4

OIL PUMP

Removing(1) Remove the four bolts securing the oil pump to the left-hand side of the crankcase and detach the oil

pump from the engine.

Dismantling

(2) Remove the two cover-plate screws and lift off the cover-plate and 'O' ring.

Inspection

- (3) Check the rotor lobe clearance against the figure given in **'GENERAL** DATA'.
- (4) Check the rotor end-float against the figure given in 'GENERAL DATA'.

Reassembling

(5) Reverse the dismantling procedure.

Refitting

(6) Reverse the removing procedure, with the driving slot in the pump shaft positioned to engage the tongue on the drive.

Section A.5

OIL PRESSURE RELIEF VALVE

Removing

- (1) Unscrew the **centre-bolt** and remove the oil filter bowl and element.
- (2) Unsaew the relief valve cap nut and withdraw the relief valve spring.
- (3) Remove the plunger, using tool **18G** 69.

Inspection

- (4) Check the relief valve spring against the specification given in 'GENERAL DATA'.
- (5) Check the valve seating by applying **engineer's** blue to the conical valve face and testing for continuous marking. If necessary, lap the valve onto the seat, using tool **18G** 69.

Refitting

(6) Reverse the procedure in (1) to (3), ensuring that the cap nut washer is in a serviceable condition.

Section A.6

TRACTOMETER AND OIL **PUMP DRIVE** SHAFT Removing

- (1) Unscrew the **centre-bolt** and remove the oil filter bowl and element.
- (2) Disconnect the tractometer cable from the angle drive.
- (3) Remove the tractometer drive housing and withdraw the oil seal from the (latertype) housing.
- (4) Withdraw the drive shaft, allowing it to rotate to disengage from the camshaft. Slight rotation of the crankshaft may be necessary to allow the drive shaft gear **to** clear the crankshaft web.

Inspection

(5) Ensure that the drive shaft is perfectly straight and that the oil **pump** drive and tractometer square drive are not worn or damaged.

Refitting

(6) Grease the drive shaft seal and reverse the **pro**cedure in (1) to (4), starting with the oil pump drive sufficiently out of line to allow for rotation of the drive shaft as it engages the camshaft.

Fig. A.3

When rebushing the forged-type valve rocker ensure that the bush joint is in the position indicated

A.10
Section A.7

VALVE ROCKER SHAFT AND TAPPETS

Removing

Valve rocker shaft

- (1) Disconnect the breather pipe from the rocker cover.
- (2) Unscrew the two rocker cover retaining nuts and remove the two engine sling brackets.
- (3) Remove the rocker cover, cup washers, and **rubber bushes**.
- (4) Remove the eight nuts and spring washers, and the four plates from the rocker shaft brackets, and lift off the rocker shaft assembly.

Tappets

- Carry out the procedure in (1) to (4).
- (5) Withdraw the push-rods and label them for **assembly** in their original positions.
- (6) Remove the two covers from the left-hand side of the engine and lift the tappets out of their housings. The tappets should be labelled to ensure reassembly in their original positions.

Dismantling

Valve rocker shaft

- (7) Remove the grub screw locating the rocker shaft in the front mounting bracket.
- (8) Withdraw the split pins, remove the flat washers and spring washers from the ends of the shaft, and slide the rockers, brackets, and springs from the shaft.
- (9) Remove the screwed plug fitted **in** one end of the shaft to clean out the oil-way.

Inspection

(10) Check the rocker bush to rocker shaft clearance against the figures given in 'GENERAL DATA'. If the rockers are of the pressed-steel type, and the bushes are worn, the rockers should be renewed. If the bushes are worn in forged rockers, theyshould be renewed using tools 18G 226 and 18G 226 A. Fit new bushes with the butt joint positioned at the top of the rocker bore, and drill oil holes in

Fitting o valve rocker bush using tools 18G 226 and 18G 226 A

each bush to coincide with the oil-ways in the rocker. If the holes are drilled after fitting, remove the adjuster screw from the rocker and drill through the end plug and bush, using a No. 43, **'089** in. (2.26 mm.) drill. Replace the drilled-out plug with a rivet (Part No. 5C 2436) and weld it **in** position. The second hole in the bush should be drilled with a No. 47, -078 in. **(1-98** mm.) drill, and the bush should then be burnish-reamed to the size given in **'GENERAL DATA'**.

- (11) Ensure that the push-rods are perfectly straight and that the ends are not damaged.
- (12) Check the diameter of the tappets against the figure in 'GENERAL DATA', and examine the bottom face of the tappets for wear.

Reassembling

Valve rocker shaft

(13) Reverse the procedure in (7) to (9).

Refitting Tappets

(14) Reverse the procedure in (5) and (6).

Valve rocker shaft

- (15) Reverse the procedure in (1) to (4), noting the following points:
 - (a) Tighten the rocker bracket nuts to the torque figure given in 'GENERAL DATA'.
 - (b) Adjust the valve rocker clearance as described in Section A.13.

Section A.8

CYLINDER HEAD

Removing

- (1) Remove the bonnet and radiator (Section B3, (1) to (10)).
- (2) Remove the radiator expansion tank.

Fig. A.6 Compressing the valve springs with tool 18G 45

- (3) Remove the bowl from the hydraulic filter and drain the system.
- (4) Release and withdraw the suction pipe from the top of the hydraulic reservoir.
- (5) Disconnect the hydraulic pressure pipe union located just above the engine oil filter.
- (6) Release the hydraulic pressure pipe from the bracket on the cylinder head by unscrewing the two nuts and removing the 'U' clamp.
- (7) Remove the three bolts securing the hydraulic pump mounting bracket to the cylinder head.
- (8) Detach the drive belt and remove the hydraulic pump from the engine.
- (9) Remove the exhaust pipe and silencer from the manifold.
- (10) Remove the air cleaner to manifold hose.
- (11) Remove the fuel filter (Section C.5, (I) and (2)).
- (12) Disconnect and remove the fuel return pipe from the injection pump.
- (13) Remove the hydraulic tank (Section M.5, (1) to (9)).
- (14) Disconnect the high-pressure pipes from the injectors.
- (15) Remove the feed and the three connecting links from the heater plugs.
- (16) Remove the rocker shaft and push-rods (Section A.7, (1) to (5)).
- (17) Withdraw the engine breather pipe from the bracket grommets.
- (18) Slacken the water by-pass hose clips.
- (19) Remove the 11 cylinder head nuts and fiat washers, and **lift the** cylinder head off the cylinder block.

Dismantling

- (20) Unscrew the heater plugs from the cylinder head.
- (21) Remove the two nuts and washers securing the exhaust manifold, and the six nuts and washers securing both air and exhaust manifolds, and lift both manifolds away.
- (22) Remove the spill pipe and clamps from the injectors, and withdraw the injectors from the cylinder head, using tool 18G 284 and adaptor 18G 284 P.
- (23) Unscrew the three nuts and remove the water outlet elbow. Ease the outlet elbow gasket off the three studs and withdraw the thermostat.
- (24) Detach the spring clips from the valve cotters and, using tool **18G** 45 to compress the valve springs, remove the cotters, the valve spring top collars, the **inner** and outer valve springs, the valve oil seals, and the valve spring bottom cups.
- (25) Withdraw the valves from their guides, marking them for reassembly in their original positions.
- (26) The combustion chamber inserts can be removed by means of a drift inserted through the injector location in the top of the cylinder head. The lower faces of the combustion chamber inserts are machined after fitting to the cylinder head, and if they are removed the inserts should be labelled to ensure reassembly in their original positions.
- (27) The injector nozzle heat shields can be tapped u p wards out of the cylinder head after removal of the combustion chamber inserts.

Inspection

- (28) Check the cylinder head joint face for flatness.
- (29) Ensure that the heater plug **drillings** in the cylinder head are free of carbon.
- (30) Check the valve springs against the specification in 'GENERAL DATA'.

Fig. A.7

The value guides in position. Dimension (A) should be $\frac{18}{32}$ in. (15 mm.)

A.12

- (31) Check the valve stem to guide clearanceagainst the figures given in 'GENERAL DATA'. If new valve guides are fitted, the top face of each guide should be 19 in. (15 mm.) above the valve spring seat surface of the cylinder head.
- (32) Check the valve head stand-down against the figure in 'GENERAL DATA'.

Reassembling

- (33) Reverse the procedure in (20) to **(27)**, noting the following points:
 - (a) Ensure that the joint washer under the flange of each heat shield is in serviceable condition.
 - (b) Check that the lower faces of the combustion chamber inserts are not proud of the cylinder head face.
 - (c) Renew the corrugated washers in the bottom of the heat shields and check the serviceability of the injector to heat shield flange joint washers.
 - (d) Tighten the injector clamp nuts to the figure given in 'GENERAL DATA'.

Refitting

- (34) Reverse the procedure in (1) to (19), noting the following points:
 - (a) Ensure that the cylinder head joint washer is in *a* serviceable condition and is fitted dry with the side marked **'TOP'** and 'FRONT' uppermost.
 - (b) Working in the order shown in Fig. A.9 tighten the cylinder head nuts to the torque figure given in 'GENERAL DATA'.
 - (c) Tighten the rocker bracket nuts to the torque figure given in 'GENERAL DATA'.
 - (d) Adjust the valve rocker clearance (Section A.13).
 - (e) Refill the hydraulic system (Section M.6).
 - (f) Refill the cooling system (Section B.1, (9) to (11) or Section B.6, (6) to (9)).
 - (g) Bleed the fuel system (Section C.8).

Fig. **A.8 The top** faces of the valves should **stand** below the cylinder headface

A = .018 to .038 in. (.46 to .97 mm.)

Cylinder head nut tightening sequence

Section A.9

CAMSHAFT, TIMING GEAR, AND ENGINE FRONT

Removing Timing cover

- (1) Remove the radiator (Section B.3, (1) to (10)).
- (2) Remove the hydraulic pump drive belt.
- (3) Remove the dynamo and drive belt (Section K.5, (2) to (5)).
- (4) Remove the water pump (Section B.4, (3) to (5)).
- (5) Unscrew the starting nut from the front of the crankshaft.
- (6) Unscrew the four bolts and detach the hydraulic drive pulley from the crankshaft pulley.
- (7) Withdraw the crankshaft pulley from the **crank**-shaft.
- (8) Remove the 13 securing bolts and detach the timing cover from the engine.

Injection pump driving chain and tensioner

- Carry out the procedure in (1) to (8).
- (9) Remove the oil thrower from the crankshaft.
- (10) Unscrew the two bolts and remove the injection pump driving chain **tensioner**.
- (11) Unscrew the four bolts and remove the driving flange from the injection pump chain wheel.
- (12) Detach the two halves of the retaining plate from the face of the injection pump chain wheel.
- (13) Remove the key from the front of the crankshaft and withdraw the injection pump driving chain complete with **both** its chain wheels.
- (14) Remove any shims fitted on the **crankshaft** in front of the camshaft driving chain wheel.

Camshaft driving chain and tensioner

Carry out the procedure in (1) to (14).

- (15) Rotate the crankshaft until the timing marks on both camshaft driving chain wheels are in the position shown in Fig. A.12.
- (16) Unscrew the nut from the end of the **camshaft**, using tool 18G 98 **A**.
- (17) Unscrew the two bolts and remove the camshaft driving chain tensioner.

Fig. A.10

Slackening the camshaft nut with tool 18G 98 A

- (18) Withdraw the camshaft driving chain complete with both its chain wheels.
- (19) Remove any shims fitted on the crankshaft behind the camshaft driving chain wheel.

Camshaft

- Carry out the procedure in (1) to (19).
- (20) Remove the valve rocker shaft and tappets (Section A.7, (1) to (6)).
- (21) Remove the fuel lift pump (Section C.4, (1) to (3)).
- (22) Unscrew the three bolts and remove the camshaft locating plate.
- (23) Withdraw the camshaft, allowing it to rotate to disengege from the oil pump drive.

Engine front plate

Carry out the procedure in (1) to (19). The procedure in (20) to (23) (camshaft removal) may also be carried out but is not necessary.

- (24) Disconnect the throttle and stop controls from the injection pump.
- (25) Remove the fuelfeed and return pipes from between the injection pump and filter.
- (26) Remove the radiator expansion tank and disconnect the high-pressure pipes from the injectors.
- (27) Disconnect and remove the oil pipe from between the chain tensioner packing block and the injection pump chain wheel hub.
- (28) Unscrew the five bolts securing the front plate to the crankcase and front main bearing cap, and remove- the front plate complete with injection pump and high-pressure pipes. Note the separate joint washer at the top fixing hole.

Injection pump chain wheel hub

Carry out the procedure in (1) to (14). The procedure in (15) to (28) may also be carried out but is not necessary.

(29) **Disconnect** and remove the oil pipe from between A.14

the chain tensioner packing block and the injection pump chain wheel hub.

- (30) Remove the injection pump (Section C.6, (1) to (3)).
- (31) Remove the chain wheel hub from the front plate.

Inspection

- (32) Examine the crankshaft front oil seal, and renew it if there is the slightest sign of wear or damage.
- (33) Check both chain tensioners. If ovality near the mouth of the body bore is in excess of .003 in. (08 mm.), the chain tensioner should be renewed; and if the slipper head is badly worn, a new slipper head and cylinder assembly should be fitted to the existing body, provided the body is in serviceable condition.
- (34) Check the clearance between the injection pump chain wheel hub and bearing against the figures in 'GENERAL DATA'.
- (35) Fit the locating plate and chain wheel to the camshaft, and measurel the clearance (camshaft endfloat) between the locating plate and the face of the camshaft journal. If the end-float is outside the figure given in 'GENERAL DATA', renew the locating plate.

Refitting

Injection pump chain wheel hub

(36) Reverse the procedure in (29) to (31), noting the following points:

- (a) After refitting the injection pump driving chain it will be necessary to reset the injection timing as described in Section C.6, (84) to (87).
- (b) When all fuel system unions have been reconnected, bleed the system as described in Section C.8.

Engine front plate

(37) Reverse the procedure in (24) to (28) and bleed the fuel system as described in Section C.8.

Fig. A.11

Checking the chain wheel alignment with a straightedge and feeler gauge

Camshaft

- (38) Reverse the procedure in (20) to (23), noting the following points:
 - (a) Fit the camshaft retaining plate with its whitemetal face towards the camshaft.
 - (b) Bleed the fuel system as described in Section C.8, after the lift pump has been connected into the system.
 - (c) Adjust the valve rocker clearance as described in Section A.13.

Camshaft driving chain and tensioner

- (39) Reverse the procedure in (16) to (19), noting the following points:
 - (a) Secure both chain wheels, less chain, to their shafts. Push both chain wheels towards the engine and check the chain wheel alignment by means of a straight-edge across the teeth faces. Increase or decrease the thickness of shims behind the crankshaft chain wheel to position it 005 in. (127 mm.) rearwards of the camshaft chain wheel.
 - (b) When the driving chain and wheels are assembled to their respective shafts ensure that the timing marks line up as shown in Fig. A.12.
 - (c) To refit the chain tensioner, remove the plug from the base of the tensioner body. Assemble the cylinder and spring into the slipper plunger, and using a $\frac{1}{8}$ in. (3.18 mm.) Allen key, rotate the cylinder in a clockwise direction until it is held in the closed position by the peg inside the plunger. Fit the slipper assembly into the tensioner body, hold the complete assembly in the closed position, and using the Allen key through the hole in the base, rotate the cylinder in a clockwise direction until the helical groove is felt to engage the plunger peg. Still holding the assembly closed, refit and lock the plug in the base of

Fig. A.12

Showing the positions of the timing **marks** when the timing gear is correctly assembled

- 1. Injection pump driving flange.
- 2. Injection pump chain wheel.
- Crankshaft chain wheel—injection pump drive. Crankshaft chain wheel—camshaft drive. 3.
- 4.
- 5. Camshaft chain wheel.

Using tool 18G 3 to centralize the timing cover on the crankshaft

> the tensioner body and secure the plunger in the closed position by wrapping with wire. After fitting the chain tensioner to the engine, remove the wire.

Injection pump driving chain and tensioner

- (40) Reverse the procedure in (9) to (14), noting the following points:
 - (a) Check and adjust the chain wheel alignment as described in (39) (a), but in this case the teeth faces should be in line.
 - (b) The timing marks on both chain wheels and on the injection pump driving flange should be positioned as shown in Fig. A.12 when they are assembled to the engine.
 - (c) Refit the chain tensioner as described in (39) (c).

Timing cover

(41) Reverse the procedure in (1) to (8), using tool 18G 3 to centralize the timing cover on the crankshaft, and fill the cooling system (Section B.I, (9) to (11) or Section B.6, (6) to (9)).

Section A.10

FLYWHEEL AND BACK PLATE

Removing

Flywheel

- (1) Remove the clutch (Section D.2, (1) to (23)).
- (2) Remove the six flywheel to crankshaft bolts and withdraw the flywheelfrom the two locating dowels.

Back plate

Carry out the procedure in (1) and (2).

- (3) Unscrew the six bolts and remove the oil seal housing from the back plate.
- (4) Remove the 12 bolts and withdraw the back plate from the two locating dowels, noting the 'O' ring in the groove in the back plate.

A

Inspection

- (5) Examine the crankshaft oil seal, and renew it if there is the slightest sign of damage.
- (6) Examine the starter ring teeth for wear or damage. If necessary, remove the starter ring by drilling a hole and splitting it with a hammer and chisel. Heat the new starter ring uniformly to the temperature given in 'GENERAL DATA'; the strip of temperature-indicating paint on the ring will change from pink to grey when the temperature is correct. Fit the starter ring with the tooth chamfer facing away from the flywheel register.

Refitting

Back plate

(7) Reverse the procedure in (3) and (4).

Flywheel

- (8) Refit the flywheel and tighten the bolts to the torque figure given in 'GENERAL DATA'.
- (9) Reverse the procedure in Section D.2, (1) to (23), noting the points mentioned in Section D.2, (40) (b), (c), and (e).
- (10) Adjust the clutch pedal free movement (Section D.l, (1) to (3)).
- (11) Bleed the fuel system (Section C.8).
- (12) Refill the hydraulic system (Section M.6).

Section A.11

SUMP, CRANKSHAFT, AND MAIN BEARINGS Removing

Sump

- (1) Drain the sump.
- (2) Remove the radiator (Section B.3, (1) to (10)).
- (3) Raise the front of the tractor and place a support under the gearbox.
- (4) Remove the front axle (Section G.1, (2), (3), (5), (6) and (7)).
- (5) Take the weight of the engine on a crane.
- (6) Remove the clutch (Section D.2, (3) to (16) and (21) to (23) **)**.
- (7) Remove the flywheel and back plate (Section A.IO, (2) to (4)).
- (8) Remove the 13 bolts and two nuts securing the sump to the crankcase and remove the sump from the engine, noting:
 - (a) The 'O' ring at the oil pick-up joint.
 - (b) **The** oil sealing strip at the sump to front main bearing cap joint.

Oil strainer

Carry out the procedure in (1) to (8).

(9) Unscrew the two bolts securing the oil suction pipe flange to the sump and the two bolts securing the oil strainer bracket to the sump, then remove the oil strainer and suction pipe. Crankshaft and main bearings

Carry out the procedure in (1) to (8).

- (10) Remove the engine front plate (Section A.9, (2) to (5), (7) to (19), and (25) to (28)).
- (11) Unscrew the connecting rod cap bolts, remove the caps with their bearing halves, and push the **connecting** rods up the cylinder bores. Connecting rods and caps should be marked to ensure refitting in their original positions.
- (12) Remove the main-bearing cap bolts, caps, main bearing bottom halves, and the two half **thrust** washers positioned on the faces of the centre cap. The main bearing caps, and the crankcase, should be marked to ensure that the caps are replaced in their correct positions.
- (13) Remove the crankshaft, the main bearing top halves, and the two half thrust washers positioned on the faces of the centre bearing housing.

Inspection

- (14) Check the crankshaft journals for wear against the figures in 'GENERAL' DATA'.
- (15) Check the crankshaft to main bearing clearance against the figures in 'GENERAL DATA'.
- (16) Check the crankshaft end-float against the figures in 'GENERAL DATA', and adjust the end-float by selective assembly of the thrust washers.

Refitting

Crankshaft and main bearings

- (17) Fit the main bearings and thrust washers to the crankcase and caps, fit the crankshaft and caps to the crankcase; tighten the main bearing cap bolts to the torque figure given in 'GENERAL DATA'.
- (18) Refit the front plate and timing gear by reversing the procedure in Section A.9, (25) to **(28)**, (7) to **(19)**, and (2) to (5), noting the following points:
 - (a) Check the chain wheel alignment as described in Section A.9, (39) (*a*) and (40) (a).
 - (b) Refit the timing chain tensioners as described in Section A.9, (39) (c).
 - (c) Ensure that the timing marks line up as shown in Fig. A.12.
 - (d) Use tool 18G 3 to centralize the timing cover to the crankshaft.
- (19) Ensure that the connecting rod big-end bearings are correctly located in the rods and caps. Refit the connecting rods to the crankshaft noting that the bolt heads should be towards the camshaft side of the engine, and tighten the bolts to the torque figure given in 'GENERAL DATA'.

Oil strainer

(20) Fit the oil strainer and suction pipe into the sump, and tighten the suction pipe flange bolts before tightening the oil strainer bracket bolts.

Sump

(21) Refit the sump to the crankcase and tighten the securing bolts and nuts evenly.

- (22) Fit the hack plate and flywheel (Section A.IO, (7) and (8) **)**.
- (23) Fit the clutch by reversing the procedure in Section **D.2**, (21) to (23) and (3) to **(16)**, noting the following points:
 - (a) Position the clutch driven plate as described in Section D.2, (40) (b) and (c).
 - (b) Adjust the clutch pedal free movement as described in Section D.1, (1) to (3).
 - (c) When connecting the stop control cable to the injection pump, ensure that the stop lever on the pump has its full range of movement.
- (24) **Refit** the front axle and radiator by reversing the procedure in Section **G.1**, (2) to (7) and Section **B.3**, (1) to (10).
- (25) Bleed the fuel system (Section C.8).
- (26) Refill the hydraulic system (Section M.6).
- (21) Refill the cooling system (Section B.1, (9) to (11) or **Section** B.6 (6) to (9) **)**.
- (28) Refill the sump.

Section A.12

CONNECTING RODS AND PISTONS

Removing

- Connecting rods
 - (1) Drain the sump.
 - (2) Remove the radiator (Section B.3, (1) to (10)).
 - (3) Raise the front of the tractor and place a support under the gearbox.
 - (4) Remove the front axle (Section G.1, (2), (3), (5), (6), and (7)).
 - (5) Take the weight of the engine on a crane.
 - (6) **Remove** the clutch (Section D.2, (3) to (16) and (21) to (23)).
 - (7) Remove the flywheel and backplate (Section A.10, (2) to (4)).
 - (8) Remove the sump (Section A.11, (8)).

- (9) Remove the rocker shaft and push-rods (Section A.7, (1) to (5)).
- (10) Remove the cylinder head (Section A.8, (6) to (9), (11) and (12), (14) and (15), and (17) to (19)).
- (11) Unscrew the connecting rod cap bolts, remove the caps **with** their bearing halves, and withdraw the connecting rods and pistons from the top of the cylinder bores. The connecting rods and **caps** should be marked to ensure refitting in their original positions.

Pistons

Carry out the procedure in (1) to (11).

(12) Mark the pistons to ensure correct refitting, remove the circlips, and press out the gudgeon pins to release the pistons from the connecting rods.

Inspection

- (13) Check the big-end bearing to **crankpin** clearance against the figures in '**GENERAL DATA**'.
- (14) Check the connecting rod alignment.
- (15) Check the gudgeon pin clearance against the figures in 'GENERAL DATA'.
- (16) Check the piston ring groove clearance against the figures in 'GENERAL DATA'.
- (17) Check the piston ring gap, in an unworn part of the bore, against the figures in 'GENERAL DATA'.

Refitting

Pistons

(18) Refit the pistons to the connecting rods, ensuring that the combustion trough in the piston crown is on the opposite side of the connecting rod to the big-end cap.

Connecting rodr

(19) Fit the connecting rods and pistons into the cylinder bores, using tool **18G** 55 A to compress the piston rings.

Fig. A.15

The correct assembly of the connecting rodr and pistons to the crankshaft

Fig. A.16

Checking and adjusting the valve rocker clearance

(20) Ensure that the big-end bearings are correctly located in the connecting rods and caps, and fit the connecting rods and caps to the crankshaft with the bolt heads towards the camshaft side of the engine. The combustion troughs in the piston crowns should now be on the opposite side of the engine to the camshaft. Tighten the connecting rod bolts to the torque figure given in 'GENERAL DATA'.

NOTE.—The big-end bearings are offset on the connecting rods, and the rods should be fitted so that the bearings of Nos. 1 and 3 are offset towards the rear of the engine, and the bearings of Nos. 2 and 4 are offset towards the front (see Fig. A.15).

- (21) Refit the cylinder head by reversing the procedure in Section A.8, (17) to (19), (14) and (15), (11) and (12), and (6) to (9), noting the following points:
 - (a) Ensure that the cylinder head joint washer is in **a serviceable** condition and is fitted **dry with** the side marked **'TOP'** and 'FRONT' uppermost.
 - (b) Working in the order shown in Fig. A9, tighten the cylinder head nuts to the torque figure given in 'GENERAL DATA'.
- (22) Refit the rocker shaft and push-rods by reversing the precedure in Section A.7, (1) to **(5)**, tightening the rocker bracket nuts to the torque figure given in 'GENERAL DATA', and adjusting the valve rocker clearance as described in Section A.13.
- (23) Refit the **sump** to the crankcase and tighten the securing bolts and nuts evenly.
- (24) Fit the back plate and flywheel (Section A.10, (7) and (8)).
- (25) Fit the clutch by reversing the procedure in **Section.D.2,** (21) to (23) and (4) to **(16),** noting the **following** points:
 - (a) Position the clutch driven plate as described in Section D.2, (40) (b) and (c).
 - (b) Adjust the clutch pedal free movement as described in Section D.1, (1) to (3).
 - (c) When connecting the stop control cable to the injection pump ensure that the stop lever on the pump has its **full** range of movement.

- (26) Refit the front axle and radiator by reversing the procedure in Section **G.1**, (2) to (7) and Section B.3, (1) to (10).
- (27) Bleed the fuel system (Section C.8).
- (28) **Refill** the hydraulic system (Section M.6).
- (29) Refill the cooling system (Section B.l, (9) to (11) or Section B.6, (6) to (9) **)**.
- (30) Refill the sump.

Section A.13

VALVE ROCKER CLEARANCE

The clearance between the ends of the valve stems and the valve rockers is checked by means of a feeler gauge.

Crank the engine until No. 8 valve is fully open and check the clearance of No. 1 valve which will now be fully closed.

To adjust the clearance, hold the adjusting screw with a screwdriver and slacken the locknut. Rotate the adjusting screw until the clearance between the valve stem and rocker is as given in 'GENERAL DATA'. Hold the adjusting screw against rotation and lock it in position with the locknut. Then re-check the clearance.

Check the remaining rocker clearances by reference to

the following table:

No. 1 valve (ex.) with No. 8 valve fully open. No. 3 valve (in.) with No. 6 valve **fully** open. No. 5 valve (ex.) with No. 4 valve fully open. No. 2 valve (in.) with No. 7 valve fully open. No. 8 valve (ex.) with No. **1** valve fully open. No. 6 valve (in.) with No. 3 valve fully open. No. 4 valve (ex.) with No. 5 valve fully open. No. 7 valve (in.) with No. 2 valve fully open.

- A. Inlet valve opens.
- Exhaust valve closes.
 C. Exhaust valve opens.
- D. Inlet valve closes.
- E. Static injection timing, 16' B.T.D.C.
- F. Top dead centre.
- G. Bottom dead centre.

Section A.14

VALVE TIMING CHECK

Set the valve rocker clearance of No. 1 cylinder inlet valve to **020** in. (-51 mm.).

Crank the engine until the exact point at which No. 1 inlet valve is about to open. A clock gauge, with its plunger contacting the valve spring collar, will facilitate this operation.

The timing disc on the crankshaft should now show the 5" **B.T.D.C.** position in the set of markings identified 1.4.

Reset the valve rocker clearance to the correct running figure (see 'GENERAL DATA').

Section A.15

VALVE SEAT RECONDITIONING

I the valves and seats are not badly pitted, restore them to their original efficiency by lapping with grinding paste.

In the event of severe pitting, reface the valves on a valve grinder to the angle given in 'GENERAL DATA' and reface the valve seats by means of the valve seat cutters shown in Section R. Use the glaze breaker to prepare the seats and then the cutters to clean them up. Remove only as much metal as is necessary to correct the seats and then restore them to their correct width (see 'GENERAL DATA') by the use of narrowing cutters.

If the seats cannot be restored by the recutting process, machine out the seatings to the dimensions given in Fig. A.18 and press special inserts into the cylinder head.

Valve seat machining dimensions

P

Inlet (A)

- c. 1.031 in. (26.187 mm.). 1.135 to 1.140 in. D.
- (28.83 to 28.956 mm.). 1.2565 to 1.2575 in.
- (31.915 to 31.94 mm.).
- •070 to •075 in. (1.78 to 1.9 mm.).
- -258 to -261 in. G.
- (6.55 to 5.63 mm.). Maximum radius 015 in.
- (•381 mni.). 45°. J.
- 30°. ĸ.

- •258 to •261 in. 0.
- (6.55 to 6.63 mm.).
- R. Maximum radius 015 in. (381 mm.).
- s. 45°.
- т. 20°.

Cut new valve seats in the inserts to the dimensions given in Fig. A.18 and ensure that the throat of each insert blends into the throat in the cylinder head

After reconditioning the valves and seats, check the valve stand-down against the dimensions in 'GENERAL DATA'.

Section A.16

CAMSHAFT BEARING LINERS

Removing

Centre bearing liner

- (1) Insert pilot adaptor 18G 124 K into the front bearing liner from inside the crankcase, and adaptor 18G 124 B into the centre bearing liner from the rear.
- (2) With the body of tool 18G 124 A positioned on the centre screw, pass the screw through the two adaptors already fitted into the bearing liners.
- (3) Place the slotted washer on the flat at the rear of the centre screw and fit the tommy-bar in position behind the slotted washer.
- (4) Tighten up the wing nut to withdraw the centre bearing liner.

Front and rear bearing liners

- (5) Insert adaptor 18G 124 K into the front bearing liner from inside the crankcase.
- (6) With the body of tool 18G 124 A positioned on the centre screw, pass the screw through the adaptor in the front bearing.
- (7) Place the slotted washer on the fiat at the rear of the centre screw, fit the tommy-bar in position behind the slotted washer, and tighten up the wing nut to withdraw the front bearing liner.
- (8) Withdraw the rear bearing liner as described in (5) to (7), but using adaptor 18G 124 M.

DIESEL ENGINE

Fitting new bearing liners

The **bearing** liners should be so positioned that their oil **boles** line up with the oil **boles** in the **bearing** housings.

Front and rear bearing liners

- (9) Place the new front bearing liner on the small diameter of adaptor **18G** 124 K and insert the adaptor, large diameter first, into the front bearing housing from inside the crankcase.
- (10) With the body of tool 18G 124 A positioned on the centre screw, pass the screw through the adaptor in the front bearing housing.
- (11) Position the larger of the two 'D' washers on the centre screw with the cut-away portion of the washer turned away from the butt joint in the bearing liner.
- (12) Place the slotted washer on the flat at the rear of the centre screw and fit the tommy-bar in position behind the slotted washer.
- (13) Tighten the wing nut to pull the bearing liner into position.
- (14) Fit the rear bearing liner as described in (9), (10), (12), and (13), but using adaptor 18G 124 M.

Fig. A.20

Removing a camshaft liner using tool 18G 124 A and adaptor 18G 124 K. The inset shows the liner being replaced

- 1. Slotted washer.
- 2. Slotted washer.
- 3. **D** washer.
- 4. Adaptor 18G 124 K.

Centre bearing liner

- (15) Insert pilot adaptor 18G 214 K into the front bearing liner from inside the crankcase.
- (16) Place the new centre bearing liner on the small diameter of adaptor 18G 124 B and insert the adaptor, large diameter first, into the centre bearing housing from the rear.
- (17) With the body of tool **18G** 214 A positioned on the centre screw, pass the screw through the two adaptors already positioned in the crankcase.
- (18) Fit the larger of the two 'D' washers onto the centre screw with the cut-away portion of the washer turned away from the butt.joint in the centre bearing liner.
- (19) Place the slotted washer on the flat at the rear of the centre screw, fit the tommy-bar in position behind the slotted washer and tighten the wing nut to pull the centre bearing liner into position.

Reaming the bearing liners

Lightly lubricate the arbor before assembling the **cutters** and pilots to it.

The camshaft liner reamer set up to line-ream (A) the front and rear liners and (B) the centre liner

Peed the reamer very slowly. Keep the cutters dry and the cutter flutes free of swarf, preferably with air-blast equipment.

When halt-way through each bearing, withdraw the cutter and remove all swarf from both cutter and bearing liner.

When reaming is completed, thoroughly clean all the oil-ways.

Front and rear bearing liners

- (20) Insert pilots 18G 123 AT and 18G 123 BA into the centre and rear bearing liners respectively.
- (21) Place pilot 18G 123 AO, followed by cutter 18G 123 AN, on the arbor 18G 123 A.
- (22) Pass the arbor through the front bearing and through the pilot in the centre bearing liner. Fit cutter 18G 123 AP onto the arbor and then slide the arbor into the pilot in the rear bearing housing.
- (23) Secure cutter 18G 123 AN in position No. 10, and cutter 18G 123 AP in position No. 7, on the arbor.
- (24) Ream the front bearing liner, clear it of swarf before pilot 18G 123 AQ enters, then ream the rear bearing liner.
- (25) Release the cutters from their positions and withdraw the arbor.

Centre bearing liner

- (26) Insert pilots 18G 123 BC and 18G 123 BB into the front and rear bearing liners respectively.
- (27) Pass the arbor 18G 123 A through the pilot in the front bearing, fit cutter **18G** 123 B onto the arbor and slide the arbor into the pilot in the rear bearing liner.
- (28) Secure cutter 18G 123 B in position No. 7 on the arbor and ream the centre bearing liner.
- (29) Release the cutter and withdraw the arbor.

Section A.17

CYLINDER LINERS

The cylinder liners may be bored out to a maximum oversize of **020** in. (51 mm.). If the liners will not clean up at this figure, remove them through the top face of the cylinder block, using either specialized proprietary equipment, or a power press and a set of adaptors made as shown in Fig. A.22. The necessary pressure when removing old liners is 5 to 8 tons (5080 to 8128 kg.) and when fitting new liners it is 3 tons (3048 kg.).

Fig. A.22

Cylinder liner pilots should be made to the above dimensions from case-hardening steel and casehardened. The pilot extension should be made from 55-ton hardening and tempering steel, hardened in oil, and then tempered at a temperature of 550° C. (1,020" F.)

- A. 2.5937 $^{+005}_{-000}$ in. (65.88 $^{+127}_{-000}$ mm.). B. 2.452 $^{+005}_{-000}$ in. (62.28 $^{+000}_{-000}$ mm.).
- c. 1≩ in. (44·45 mm.).
- o. ½ in. (19.05 mm.)
- z. z in. B.S.W. thread.

Pressing-in pilot

- r. 31 in. (8255 mm.). Two parallel flats to be machined on this diameter, 21 in. (66.68 mm.) apart.
- G. 21 in. (69.85 mm.).
- н. 2·451 + 000 in. (66·26 + 000 mm.).
- I. 1; in. (31.75 mm.).
- K. § in. (15.87 mm.). L. -003 + -002 in. (076 + -051 mm.).

Pilot extension

- м. 10 in. (26.7 ст.).
- N. 4 in. (22.22 mm.).
- § in. (15.87 mm.). Р
- § in. (15·87 mm.). Q.
- **R.** 1 in. (25.4 mm.) flats.
- s. tin. B.S.W. thread. T. 11 in. (31.75 mm.).

Press new liners in from the top face of the cylinder block, leaving the top face of the liner parallel with, and .002 to .005 in. (05 to .13 mm.) proud of the cylinder block face. Do not machine the top face of the liners.

After fitting, machine and hone the liner bores to the dimension given in 'GENERAL DATA'.

.

.

. .

COOLING SYSTEM

FUNCTIONAL DESCRIPTION

The indirect system of heat exchange cooling is used and consists of a closed fresh water circuit and an open sea water circuit.

The coolant circulation in the closed circuit is from the combination exhaust manifold and surge tank, through the heat exchanger and engine water jacket, and then returned to the surge tank. Flow is continuous and is assisted by a centrifugal type water pump.

The open circuit uses sea water drawn through a sea-cock and strainer, an engine driven sea water pump passes it through the heat exchanger where it collects heat from the fresh water closed circuit, and finally into the engine exhaust for overboard discharge.

Inorder that the engine will reach its operating temperature as quickly as possible, a thermostat fitted to the cylinder head will open to allow circulation in the closed circuit when the coolant temperature has reached $175^{\circ}F$.

SEA WATER PUMP (Fig. B1)

This is a self-priming positive displacement rotary pump, with brass case and a single neoprene impellor. The impellor has flexible vanes which wipe against a curved cam plate at the top of the impellor housing, producing the pumping action. Before each initial start, turn down grease cup one full turn.

B

THERMOSTAT

К

Removing:

- 1. Drain the cooling system so that the coolant level is below the mounting surfaces of the thermostat housing.
- 2. Loosen clamp securing water hose to thermostat housing.
- 3. Remove the three retaining nuts securing the thermostat housing to the cylinder head.
- 4. Lift housing from cylinder head; disconnect water hose.
- 5. Remove gasket and thermostat.

Inspection:

6. Place thermostat in a bowl of water and heat it slowly. Note the temperature at which the valve commences opening and is fully open, and check this temperature figure in "General Data".

Refitting:

- 7. Ensure all gasket material is removed from the mounting surfaces.
- Reverse the procedure in 2 to 5, coating the new gasket with sealer.
 Fill and bleed cooling system.
- 10. Start engine and after engine has reached its normal operating temperature, check thermostat housing mounting surface and water hose connection for leaks. Check level of water in surge tank and fill to within one inch from top of tank if required.

FRESH WATER PUMP

DRAINING THE COOLING SYSTEM

CAUTION: As the system is pressurized when hot, the pressure must be released gradually when the filler cap is removed.

- 1. Turn the cap slowly anti-clockwise until the resistance of the safety stops is felt.
- 2. Leave the cap in this position until all the pressure is released.
- 3. Press the cap downwards against the spring to clear the safety stops, and continue turning until it can be lifted off.

Open the cylinder block drain tap located on the left-hand side of the cylinder block by turning it in an anti-clockwise direction.

COLD WEATHER PRECAUTIONS

Water expands when it freezes, and if precautions are not taken, there is considerable risk of bursting the tank or cylinder block. Such damage may be avoided by adding anti-freeze to the water.

Only anti-freeze of the ethylene glycol type incorporating the correct type of corrosion inhibiter is suitable.

- 1. Drain and flush the cooling system.
- 2. Pour in the correct quantity of anti-freeze for the degree of protection required (see table).
- 3. Add water until the level is 1 inch from top of tank.
- 4. Run the engine until it is hot.
- 5. Add sufficient water to bring the surface up to the correct working level.
- 6. Attach a label to the filler neck indicating that anti-freeze has been added.

NOTE: The strength of the anti-freeze solution must be maintained by topping up with solution as necessary.

REMOVING FRESH WATER PUMP (Fig. B5)

- 1. Drain the cooling system.
- 2. Slacken the dynamo mounting and adjusting link bolts and disengage the drive belt from the water pump pulley. Unscrew the four bolts and remove the water pump pulley.
- 3.
- Slacken the by-pass hose clips 4.
- Unscrew the four water pump body bolts and withdraw the water pump 5. from the water pump adaptor.

DISMANTLING

- Using an extractor, withdraw the pulley hub from the spindle. 6.
- Extract the bearing locating wire through the hole in the pump body and 7. tap out the spindle and bearing assembly.
- 8. Withdraw the vane from the spindle, using an extractor, and remove the water seal.

Water pump components

- 1. By-pass adaptor.
- 2. Washer for by-pass adaptor.
- **3.** Water pump adaptor.
- 4. Joint washer for pump adaptor.
- 5. Set screw for pump adaptor.
- 6. Joint washer for pump body.
- 7. Vane.

- 8. Seal.
- 9. Set screw for lubricating point.
- 10. Fibre washer. for set screw.
- 11. Water pump body.
- 12. Set screw for body.
- 13. Shakeproof washer.
- 14. Locating wire for bearing.
- Bearing assembly. 15.
- 16. Hub for pulley.
- Water pump pulley. 17.
- Set screw for pulley. 18.
- 19. Spring washer.
- 20. Set screw for body and adaptor.
- 21. Spring washer.

INSPECTION

В

- 9. Check the interference fit of both the pulley hub and the vane on the pump spindle (see GENERAL DATA). If the fit has been destroyed, renew the components.
- 10. Ensure that the bearing grease retainers are in good condition.

REASSEMBLING

- 11. Fit the bearing assembly into the pump body. Ensure that the hole in the bearing coincides with the lubricating hole in the body, and fit the bearing locating wire and the water seal.
- 12. Press the vane onto the spindle until its face is flush with the face of the body (see Fig. B. 4).

13. Press the pulley hub onto the spindle to the dimension shown in Fig. B. 4. REFITTING

14. Reverse the procedure in 2 to 5, and fill the cooling system.

Fig. B4. Water Pump Assembly Dimension

A = 3.961 to 3.981 in. (100.609 to 101.117 mm.).

SECTION C

C

FUEL SYSTEM (DIESEL MODELS)

Altitude settings		••	••				••		••	••		C.10
Filter—main		••	••							•••		C.5
Injection pump	••		••	••	••		••	••		••	••	C.6
Injectors			••		••	•••	••		••			C 7
Lii pump	••				••	••	••	••	••	••	••	C.4
Maximum and i	dling sp	eed adj	ustmer	nt 💶	••	••						C.9
Тар									••			C.3

, ----

43. Thrust washer, 42. Thrust sleeve. 4]. Drive shaft. QO, Circlip. 39, Cam advance screw. 38. Cam ring. 37. Drive plate screw. 36. Drive plate. 35. Roller shoe. 34. Roller. Aduating place-top. 33' monod-stal gaitsubA 37° Washer for connection. :15 30. Radial connection, 29. Washer for bolt. 28. Bolt for banjo pipe. 27. Banjo pipe. 25. Washerlichpade.eal. 24. Rotor plug. Hydraulic bead and rotor assembly. 731 Tend quuq reiens 52. 21. Transfer punn vanes. Transfer pump rotor. *****07 'leas drund Jaisuer 1 '61 18. Olive for fuel feed pipe. 17. Fuel feed pipe connection. 16. Washer for inlet connection. 15. Inlet connection. 14. Filter. 13. Sleeve retaining spring. 12. Transfer pressure adjuster. 11, Spring peg. 10. Regulating spring. Washer for sleeve, **'**6 Kegulating Sleeve. '8 Regulating piston. ۰L Piston retaining spring. '9 5. Nut for stud. Stud for and plate. 't Screw for end plate. ٠ε ۲' Locating pin. I. End plate. '0N noitqirəzəQ

ŝ

ti

.qeo gaileo2 .08 85. Washer for nut. Locknut for screw. **'†**8 Maximum speed stop sciew. *88 Washer for nut. '78 81. Locknut for screw. .08. Idling stop screw. Shut-off lever. '6L Washer for nut. *8L Then a tot tot The The 76. Dust cap for shaft. O ring for shaft. 'SL Shut-off shaft, *t/L .mis sittotiff .ET 72. Washer for nut. Nut for shaft. 11 70. Dust cap for shaft. .U' ting for shalt. '69 Throttle shaft, '89 .tun rol radan [7] puts tot tube in in in in in in iteration in the intervention in the interventin the intervention in the i Tab washer for stud. °\$9 Control cover stud. '79 Keep plate. °£9 62. Linkage nut. 6]. Backing washer. .19dsew lisd Jovig .00 . Linkage washer, 58. Linkage spring. . pring retainer. 15 56. Linkage hook. .55. Metering valve. . she shut-off bar. Spring guide. -65 Governor spring. •75 Spring for governor arm, 15 Governor arm. **'**0\$ Tab washer for screw, **'**6† 48. Screw for bracket. 47. Control bracket. O' ring for drive shaft. '9Þ Weight retainer. •S4 . Governor weight. uondinosaa '0N

Iled aviav numbr-return valve ball. 127. Washer for bolt. 126. Inner O' ring for bolt. Outer 'O' ring for bolt, 1521 Hydraulic bead locating bolt. 124 Inner spring for piston. 123. Outer spring for piston. .221 Advance piston. 121 Washer for screw. 120 SCIEW IOT Spring cap. '6H O' ring for spring cap. '811 Buisnoy lot dm Builds 771 .Suld rot gain 'O' '911 IIS. End plug ioi nousing. II4. Washer for cap nut. 113. Cap nut for stud. 112, Stud for housing. 111' Gasket for housing. Advance unit housing. '011 MSSIGT TOT SCLEW. 160T Screw for cover plate. '801 Gasket for cover plate. °201 Cover plate. 190T .105, Quill shaft. Journal Magner. '#0T Spring washer for screw. 1031 102. Drive shaft screw. 101. Drive hub seal. 100. Drive hub. Vent screw. '66 98. Vented locking screw for hydraulic bead, .Washer for screw. Hydraulic bead locking screw. '96 Washer for connection. '56 Drain connection. '76 Joint washer for punp mounting flange. '86 Pump poqy. -76 Gasket for control cover. 16 Washer for vent screw body. '06 BODY TOF VENT SCIEW. '68 Control cover vent screw. '88

Control cover,

noitqinosoa

*28

·o_N

KEX TO THE INJECTION PUMP COMPONENTS

OWNERS NOTES

:

Section C.3

FUEL TAP

Removing

- (1) Turn the fuel tap off.
- (2) Disconnect the fuel supply pipe and injector spill return pipe from their connections on the fuel tap.
- (3) Drain the fuel tank.
- (4) Unscrew the fuel tap from the fuel tank.

Inspection

- (5) Thoroughly clean the pencil-type filter gauze, attached to the fuel tap, with fuel and a stiff brush.
- (6) Inspect the pipe connections in the fuel tap for damage to the threads and seats.

Refitting

(7) Reverse the removal procedure in (1) to (4), and bleed the fuel system (Section C.8).

Section C.4

FUEL LIFT PUMP

Removing

- (1) Turn the fuel tap off.
- (2) Disconnect the two fuel pipes from the lift pump.
- (3) Unscrew the two nuts and withdraw the lift pump from the engine.

Fig. C.4

10.

11.

12.

13.

Section through the fuel lift pump

- Clamp screw. 9.
- Diaphragm spring. Diaphragm.
- 2. 3. Pump cover.
- 4. Outlet valve.

1.

- 5. Inlet valve.
- 6. Filter gauze.
- 7. Sealing ring. 8.
- Pull rod. Operating link. Rocker arm return spring. 14.

Steel washer.

Sealing washer.

- 15. Pump body.
- Filter howl.
- 16. Rocker arm.

Dismantling

- (4) Scribe a mark across the pump body and cover joint flanges for location purposes during reassembly.
- (5) Slacken the clamp screw and remove the pump filter bowl.
- (6) Withdraw the bowl sealing ring and the filter gauze from the pump cover.
- (7) Remove the five screws and separate the cover from the pump body.
- (8) Press the centre of the diaphragm lightly downwards and rotate it through 90° to disengage the pull-rod from the operating link. Withdraw the

diaphragm assembly and remove the sealing washer, steel'washer, and diaphragm spring from the pull-rod.

(9) If the rocker arm assembly is to be removed, secure the rocker arm in a vice and tap the face of the pump mounting flange with a soft mailet until the rocker arm pin retainers are dislodged.

Inspection

- (10) Examine the pump body and cover for cracks or damaged threads, and ensure that the faces of the mounting and diaphragm flanges are true.
- (11) Examine the diaphragm for splits or cracks.
- (12) Check the rocker arm pin and linkage for wear or damage.
- (13) Check the operation of the inlet and outlet valves in the pump cover. If they are not serviceable prise the valve assemblies out of the cover with a screwdriver, renew the valve gaskets, and fit new valve assemblies into position. Press the new valve assemblies fully home and stake the cover casting in six places round each valve with a punch.

FUEL SYSTEM (Diesel Models)

Fig. C5 Main fuel filter components

- 1. Centre bolt.7. Sealing ring.2. Washer.8. O' ring.3. Filter head.9. Element.4. Sealing plug.10. Sealing ring.
- 5. Copper washer. 11. Filter base.
- 6. Non-return valve.

Reassembling

- (14) Reassemble the rocker arm, operating link, and packing washers, onto the rocker arm pin. Place this assembly, and the rocker **arm** return spring, into position in the pump body and tap two new rocker arm pin retainers into the grooves in the body casting. When the retainers are fully home secure them in position by staking the ends of the grooves.
- (15) Fit the diaphragm spring, steel washer, and sealing washer onto the pull-rod. Insert this assembly into the pump body with the notched flat on the lower end of the pull-rod in line with the slot in the operating link. Press the diaphragm downwards and rotate it through 90° to engage the pull-rod with the operating link.
- (16) Push the rocker arm towards the pump until the diaphragm is level with the body joint flange. Hold the rocker arm in this position, fit the cover to the body with the scribe marks in line, and tighten the five screws evenly.
- (17) Refit the filter gauze, sealing ring, and filter bowl.

Refitting

(18) Reverse the procedure in (1) to (3), and bleed the fuel system as described in Section C.8.

Section C.5

MAIN FUEL FILTER

Removing

- (1) Disconnect the fuel pipes from the filter head.
- (2) Remove the two bolts from the filter head mounting flange and withdraw the filter from the engine.

Dismantling

- (3) Unscrew the centre-bolt in the filter head and detach the base from the filter.
- (4) Separate the filter element from the filter head.
- (5) Remove the sealing ring from the filter base, and the sealing ring and 'O' ring from the **filter** head.
- (6) Remove the non-return valve from No. 3 (inlet) connection and the sealing plug from No. 4 (outlet) connection in the filter head.

Inspection

- (7) Examine the filter head and base castings for damaged threads, damaged seal seats, and cracks.
- (8) Check the operation of the non-return valve.

Reassembling

(9) Reverse the procedure in (3) to (6).

Refitting

(10) Reverse the procedure in (1) and (2), and bleed the fuel system as described in Section C.8.

Section C.6

FUEL INJECTION PUMP

Removing

- (1) Disconnect the throttle and stop controls, and the fuel feed and return pipes, from the injection **pump.**
- (2) Disconnect the high-pressure pipes from the injectors.
- (3) Remove the three securing nuts and plain washers and withdraw the injection *pump* from the engine.

Dismantling

- (4) Disconnect the high-pressure pipes, remove the cover-plate from the side of the pump housing, and drain the fuel oil from the pump.
- (5) Withdraw the quill shaft from the drive hub and check the drive hub end-float by inserting a feeler gauge between the drive hub and pump body. The end-floatshould not exceed 010 in. (254 mm.). Excessive end-float can be corrected by renewing the pump body and the governos weight retainer.
- (6) Mount the pump on assembly base 18G 633 A secured in a vice and remove the four high-pressure connections from the hydraulic head.
- (7) Unscrew the nuts and remove the shut-off lever and throttle arm from their shafts. Withdraw the dust cover from each shaft and remove the two nuts and washers securing the control cover.

- (8) Press the throttle shaft downwards and withdraw the control cover complete with shut-off shaft. Discard the control cover gasket.
- (9) Detach the governor spring from the governor arm and the shut-off bar from the control bracket. Remove the two control cover studs and the small set screw securing the control bracket. Detach the keep plate and lift the control bracket assembly from the pump.
- (10) Disconnect the metering valve from the linkage hook and place the valve in a container of Shell Calibration Fluid 'C' to protect its precisionground surface.
- (11) Disconnect the linkage hook from the governor arm. Detach the governor arm spring and separate the governor arm from the control bracket.
- (12) Slacken both the spring cap and end plug in the advance unit. Remove the hydraulic head locating bolt complete with its outer 'O' ring, and take care not to lose the non-return valve ball located in the side of the head locating bolt.
- (13) Remove the cap-nut and washer, and withdraw the advance unit from the pump. Detach the inner 'O' ring and washer from the head locating bolt hole, and discard the advance unit gasket.
- (14) Unscrew the spring cap and 'O' ring from the advance unit and withdraw the two springs and the piston. Note the 1 mm. shim inside the spring cap.
- (15) Remove the end plug and 'O' ring from the advance unit.
- (16) Unscrew the cam advance screw from the cam ring, with spanner **18G** 646.
- (17) Slacken the fuel inlet connection and remove the screws and studs securing the end plate to the hydraulic head. Lift out the transfer pump vanes and withdraw the transfer pump liner.
- (18) Unscrew the fuel inlet connection and withdraw the regulating valve components in the following order: sleeve retaining spring, nylon filter, transfer pressure -adjuster, regulating spring and peg, regulating sleeve with piston and joint washer, and lastly the piston retaining spring.
- (19) Hold the drive hub with tool 18G 659 and, using spanner 18G 634, slacken the transfer pump rotor by turning it in the direction of pump rotation as shown on the pump nameplate.
- (20) Remove the two hydraulic head locking screws, one of which incorporates an air vent valve, and withdraw the hydraulic head and rotor assembly from the pump. Remove the 'O' ring from the groove in the periphery of the hydraulic head.
- (21) Unscrew the transfer pump rotor, but do not allow the pumping and distributing rotor assembly to fall out of the hydraulic head.
- (22) Stand the hydraulic head with the drive plate uppermost. Hold the drive plate with spanner 18G 641 and unscrew the two drive plate screws

(see Fig. C.7). Remove the drive plate and top adjusting plate, and withdraw the rollers and shoes from the pumping and distributing rotor.

- (23) Withdraw the rotor from the hydraulic head, remove the bottom adjusting plate, and refit the rotor to the hydraulic head. Immerse the head and rotor assembly in Shell Calibration-Fluid 'C' to protect the working surfaces.
- (24) Withdraw the cam ring from the pump housing, noting the arrow etched on the visible face of the cam ring. This arrow indicates the direction of rotation as shown on the pump nameplate.
- (25) Remove the cam ring locating circlip from inside the pump, using circlip pliers 18G 1004.
- (26) Hold the drive hub with tool 18G 659 and, with torque adaptor 18G 644, unscrew the drive shaft screw from inside the drive hub. Withdraw the drive shaft and governor weights assembly from inside the pump housing.
- (27) Remove the 'O' ring, the weight retainer, weights, thrust washer, and sleeve from the drive shaft.
- (28) Withdraw the drive hub from the pump and remove the spring washer and support washer from inside the drive hub.
- (29) Remove the drive hub oil seal from the pump housing, using tool 18G 658.

Inspection

- (30) Wash all components in Shell Calibration Fluid 'C'; hold the pumping plungers in their bores and blow out the passages in the rotor with compressed air.
- (31) Remove the pumping plungers one at a time and examine them and their bores in the rotor for wear

Removing the drive hub oil seal, using extractor 18G 658

Fig. C.7

Holding the drive plate with spanner 18G 641 when unscrewing the drive plate screws

and abrasion. The end of each plunger will be polished where it contacts the roller shoe, and the plungers should be replaced in their original positions.

- (32) Examine the hydraulic head bore and its mating surface on the rotor for wear or scoring. If either of these components or the pumping plungers are worn, renew the rotor and head as a unit.
- (33) Check the cam ring lobes for wear, the plunger rollers for flats, and the roller shoes for freedom in their guides in the rotor.
- (34) Fit the drive plate to the drive shaft and ensure that there is no excessive radial movement on the splines.

Fig. C.8

Assembling the governor weights, thrust washer, and thrust sleeve into the weight retainer, using tools 18G 661 and 18G 662

- (35) Check that the transfer pump vanes are a sliding fit in their slots when lubricated with fuel oil.
- (36) Inspect the bore of the regulating valve sleeve for wear and ensure that the valve piston can move freely through it.
- (37) Check all springs for fractures and weakness, and the governor weight retainer, thrust washer, and sleeve for signs of wear.

Reassembling

Rinse the components in clean Shell Calibration Fluid 'C' and assemble them wet.

- (38) Fit a new drive hub oil seal to the pump housing, using tool 18G 663. Insert inspection plug **18G** 660 into the oil seal and examine the oil seal; a continuous black line should be visible through the plug.
- (39) Fit the two washers into the drive hub and insert the hub into the hub oil seal.
- (40) Using tools 18G 661 and 18G 662, assemble the governor weights, thrust washer, and sleeve, to the weight retainer (see Fig. C.8). The stepped flange of the sleeve must go away from the thrust washer.
- (41) Slide the governor weight assembly onto the drive shaft, fit protection cap **18G** 657 over the drive shaft splines and a new 'O' ring in the groove on the drive shaft.
- (42) Insert the drive shaft and weight assembly into the pump housing and engage the drive shaft splines with the splines in the drive hub. Fit the drive shaft screw and, using tool 18G 659 to hold the drive hub, tighten the screw with adaptor 18G 664 to the torque figure given in 'GENERAL DATA'. Check the drive hub end-float as described in (5).
- (43) Using circlip pliers 18G 1004, fit the cam ring locating circlip against the shoulder in the pump

Fig. C.9

Holding the drive hub with drive shaft screw assembly tool 18G 659 while tightening the drive shaft screw with torque adaptor 18G 664 and torque wrench 18G 537

Fig. C.10

Assemble the top adjusting plate and the drive plate with the slots in their peripheries aligned with the scribed mark on the pumping end of the rotor

housing. Place the cam ring in position against the circlip and ensure that the direction of the arrow on the visible face of the cam ring conforms with the direction of the arrow on the pump nameplate. Fit the cam advance screw finger-tight and check. the cam ring for freedom of rotation. **If** the hydraulic head and rotor are being renewed, ensure that the direction of the arrow on the pumping end of the rotor conforms with the direction of the arrow on the pump nameplate.

- (44) Withdraw the rotor from the hydraulic head and fit the top adjusting plate so that the slot in its periphery is in line with the mark on the rotor (see Fig. C.IO).
- (45) Fit the drive plate to the rotor with its relieved face next to the top adjusting plate and the slot in the periphery of the drive plate in line with the mark on the rotor (see Fig. C.IO). Tighten the drive plate screws lightly and insert the roller and shoe assemblies into their guides in the rotor. Make sure that the contour of the roller shoe ears conforms with the contour of the eccentric slots in the top adjusting plate.
- (46) Fit the bottom adjusting plate, engaging its slots with the lugs on the top adjusting plate, and ensuring that the contour of the eccentric slots matches the contour of the roller shoe ears.
- (47) Insert the rotor assembly into the hydraulic head, then fit and lightly tighten the transfer pump rotor.
- (48) Stand the head and rotor assembly on the bench drive plate uppermost. Fit the relief valve timing adaptor 18G 653 A, preset at 15 atmospheres to high-pressure outlet 'V' on the hydraulic head and connect this assembly to testing machine 18G 109 A (see Fig. C.12).
- (49) Operate the pumping lever of the testing machine and turn the rotor in the normal direction of rotation until the pumping plungers are forced outwards as far as the eccentric slots in the adjusting plates will allow; this is the maximum fuel position. Using tool 18G 656, rotate the adjusting

Fig. C.11

Tightening the transfer pump rotor, using torque wrench 18G 536 and tools 18G 659 and 18G 634

plates as necessary to set the roller-to-roller dimension at the figure given in 'GENERAL DATA' (see Fig. C.12). Hold the drive plate with tool 18G 641 and tighten the drive plate screws to the torque figure given in 'GENERAL DATA'. Disconnect the adaptor from the hydraulic head.

(50) Rotate the drive shaft in the pump housing to position the master spline at 12 o'clock. Fit a new 'O' ring to the groove in the periphery of the hydraulic head and align the master spline in the drive plate with the metering valve bore in the hydraulic head. Lubricate the periphery of the hydraulic head and the bore of the pump housing liberally with clean Shell Calibrated Fluid 'C' and assemble the hydraulic head to the pump body.

Setting the roller-to-roller dimension, using a micrometer and tools 18G 109 A and 18G 653 A

FUEL SYSTEM (Diesel Models)

Fit the two hydraulic head locking screws fingertight, positioning the screw with the vent valve above the pump nameplate.

- (51) Hold the drive hub with tool 18G 659 and, using spanner 18G 634, tighten the transfer pump rotor to the torque figure given in 'GENERAL DATA' (see Fig. C.II). Fit the transfer pump liner and insert the transfer pump vanes into their slots.
- (52) Ensure that the locating peg is in position 'C' in the pump end plate and seat the piston retaining spring in the bottom of the regulating valve bore.
- (53) Fit a new seal washer to the small-diameter end of the regulating valve sleeve and fit the piston into the sleeve. Insert the regulating spring and peg into the large-diameter end of the sleeve and place the transfer pressure adjuster on the top of the sleeve. Fit the sleeve retaining spring onto the pressure adjuster and pass the filter, small end leading, over the spring and onto the shoulder of the valve sleeve. Insert this assembly, valve sleeve first, into the **bore** of the end plate and fit the fuel inlet connection and washer.
- (54) Place a new sealing ring in its **recess in** the hydraulic head face and fit the end plate to the head, engaging the locating peg with the slot in the transfer pump liner. Tighten the end plate screws and studs to the torque figure given in '**GENERAL DATA**', then tighten the fuel inlet connection to the torque figure given in '**GENERAL DATA**'.
- (55) Using spanner 18G 646, tighten the cam advance screw to the torque figure given in 'GENERAL DATA' and check the cam ring for freedom of rotation.
- (56) Fit new 'O' rings to the advance unit end plug and spring cap, using protection cap 18G 640 to pass the rings over the threads. Screw the end plug finger-tight into the end of the advance unit where the fuel duct enters the bore. Fit the piston into the advance unit, with its counterbored end at the open end of the housing, and place the two springs in position in the piston. Place the 1.0 mm. shim washer inside the spring cap and screw the cap finger-tight into the housing. If the spring cap or end plug are renewed, ensure that the new part has the same identification letter as the component it replaces. Unmarked components.
- (57) Fit a new 'O' ring under the head of the hydraulic head locating bolt, using protection cap 18G 639. Position the non-return valve ball in the side of the head locating bolt and fit the bolt to the advance unit. Using assembly cap 18G 647, fit a new inner 'O' ring to the shank of the locating bolt, and place the plain washer on top of the 'O' ring.
- (58) Place a new advance unit joint washer on the pump housing with the straight side of the **'D'-shaped** hole at the drive end of the pump; to ensure sealing, this joint washer should be fitted dry. Position the advance unit on the pump, fit a new aluminium and tubber washer to the stud, and fit the cap nut.

C.10

Fig. C.13

Setting the governor link length (the dimension between the metering valve lever pin and the control cover stud) with the vernier held parallel to the axis of the pump

- (59) Tighten the two hydraulic head locking screws, the hydraulic head locating bolt, and the advance unit cap-nut, to the torque figures given in 'GENERAL DATA'. Tighten the advance unit end plug and spring cap to the torque figures given in 'GENERAL DATA'.
- (60) Insert the metering valve into its bore in the hydraulic head.
- (61) Assemble the governor arm, control bracket, and governor arm spring, then fit the assembly to the pump housing, ensuring that the lower end of the governor arm engages the stepped face of the thrust sleeve flange. Fit the keep plate with its open end towards the shut-off bar, and fit new tab washers with their pointed tabs towards the governor arm. Screw in-the two control cover studs to the torque figure given in 'GENERAL DATA' and secure them with the pointed tabs.
- (62) Fit the small screw and tab washer to the metering valve end of the coutrol bracket. Tighten the screw to the torque figure given in 'GENERAL DATA' and lock it with the tab washer.
- (63) Assemble the spring retainer, spring, and linkage washer onto the linkage hook. Pass the threaded end of the hook through the governor arm, fit the pivot ball washer and backing washer, and screw on the linkage nut about three turns.
- (64) Press back the spring retainer and attach the linkage hook to the metering valve so that the hook end is turned towards the metering valve.
- (65) Press the governor arm lightly in the direction of the metering valve and, using a vernier gauge held parallel to the pump axis, set the governor link length (see Fig. C.13) to the dimension given in 'GENERAL DATA'. This adjustment is made by slackening or tightening the linkage hook nut.
- (66) Locate the spring guide **in** hole No. **2** in the governor arm (see Fig. C.14) and connect the governor spring to the guide.

C

Fig. C.14

Governor spring location

1. Hole No. 1 in the throttle **shaft** link.

2. Hole No. 2 in the governor arm.

- (67) Insert the plain end of the shut-off bar into the slot in the control bracket and position the shut-off bar under the tab of the control cover locking washer.
- (68) Using protection cap 18G 654, fit new lower 'O' rings to the shut-off and throttle shafts. Fit a new upper 'O' ring to each shaft, using protection cap 18G 665, and pack the groove.between the 'O' rings on each shaft with Shell Alvania No. 2 grease.
- (69) Press the shut-offshaft into its bore in the control cover, positioning the eccentric peg close to the edge of the control cover and projecting slightly from the joint face.
- (70) Place a new control cover joint washer in position on the pump housing, engaging the tabs with the slots under the keep plate. To ensure sealing, this joint washer should be soaked in Shell Calibration Fluid 'C' before assembly.
- (71) Connect the free end of the governor spring to No. 1 hole in the throttle shaft link (see Fig. C.14) and press the throttle shaft into its bore in the control cover. Place the control cover in position on its studs, ensuring that the shut-offpeg engages the shut-off bar. Pull the shut-off shaft fully home as the control cover is lowered onto the pump housing.
- (72) Fit new sealing washers to the control cover studs, and screw on the stud nuts to the torque figure in 'GENERAL DATA'.
- (73) Place the dust caps on the throttle and shut-off shafts, fit the throttle arm and shut-off lever to their shafts and secure them in position with their nuts and washers.
- (74) Refit the inspection cover to the side of the pump housing and refit the quill shaft.

Testing and adjusting

- (75) The following precautions must oe observed when testing the pump:
 - (a) Ensure that the power-driven test bench is set to run in the direction of pump rotation as indicated **on** the pump nameplate.
 - (b) Ensure that the fuel flow at the-pump inlet is not less than 1,000 c.c./min. If this flow cannot be obtained. a maximum feed pressure of 2 lb./sq. in. (•15 kg./cm.²) is permissible.
 - (c) Do not run the pump for long periods at high speed with low fuel output.
 - (d) Do not run the pump for long periods with the shut-off control in the closed position.
 - (e) Ensure that the throttle and shut-off controls are in the fully open position except where stated otherwise.
- (76) Mount the pump on the test bench and connect up the drive.
- (77) Fit radial connections to the four high-pressure outlets in the hydraulic head and connect them, by means of high-pressure pipes to a matched set of test injectors set to open at 175 atmospheres. The pipes should be 6 mm. ×2 mm. ×865 mm. (34 in.) long, and the injectors should have Type BDN.12. SD.12 nozzles mounted in Type BKB.50.SD.19b nozzle holders.
- (78) Using flexible pipes, preferably of the transparent type, connect the injection pump to the test equip ment as follows.
 - (a) Fit transfer pressure adaptor 18G 636 in place of the hydraulic head locking screw (not the one with the vent valve), and connect the adaptor to the pressure gauge.
 - (b) Fit the end plate adjuster 18G 690 to the fuel inlet on the pump and connect the adjuster, by means of a T coupling, to both the fuel supply and the vacuum gauge.
 - (c) Connect the pump drain (back-leakage) **con**nection to the measuring glass inlet, and the measuring glass drain cock to the test bench return connection.
- (79) Fit automatic advance gauge **18G** 638 B to the advance unit spring cap in place of the small set screw. Set the degree scale to give a zero **reading.**
- (80) Unscrew the idling and maximum speed stop screws to ensure that the throttle arm has its full range of movement.
- (81) Unscrew the transfer pressure adjuster in the pump end plate to the maximum extent, then screw it in 1¹/₂ turns.
- (82) Fill and prime the injection pump as follows:
 - (a) Connect the fuel feed pipe to the drain **con**-ncction on the pump.
 - (b) Open both the vent screws on the injection pump, turn on the gravity feed, and when test oil free of air bubbles flows from the vent screw on the hydraulic head, close this vent screw. When test oil free of air bubbles flows

Fig. C.15 Checking the automatic advance, using advance gauge 18G 638 B

from the control cover vent screw, close this vent screw also.

- (c) Rotate the pump drive through 180" and repeat the procedure in (b).
- (*d*) Fit the feed and return pipes to their respective connections.
- (e) Slacken the high-pressure pipe unions at the injectors and run the test bench at 100 r.p.m. until oil, free of air bubbles, issues from the injector connections. Tighten the high-pressure pipe unions while the test machine is running.
- (83) Check the oil-tightness of all joint washers, oil seals, and pipe connections, while the pump is running and when stationary. Then carry out the following sequence of tests:
 - Test 1-Transfer pump vacuum

Run the pump at 100 r.p.m. and turn the test oil feed cock to the 'off' position. The depression registered on the vacuum gauge should reach 16 in. (406 mm.) Hg within 60 seconds maximum. Do not **run** the pump for periods exceeding 60 seconds with the test oil supply turned off. After the vacuum test turn on the test oil supply and with the pump running at 100 r.p.m. air-vent the pump by means of the vent screw on the hydraulic head.

- Test 2—Transfer pump pressure Run the pump at 100 r.p.m. and note the pressure gauge reading. This should be 11 lb./sq. in. (·8 kg./cm.²) minimum.
- Test 3—Transfer pump pressure Increase the pump speed to 800 **r.p.m.** The pressure gauge reading should now be 50 to **66 lb./sq.** in. (3.5 to 4.7 kg./cm.²).
- Test 4—Advance setting

With the pump **running** at 900 **r.p.m.** set the end plate adjuster to give an advance gauge reading of **2**²°.

Test 5—Advance position

Increase the pump speed to 1,400 r.p.m. The advance gauge reading should now be $3\frac{1}{2}$ to $4\frac{1}{4}^{\circ}$.

Test &Back-leakage

Run the pump at 1,000 **r.p.m.** and measure the back-leakage in the measuring glass: it should be 5 to 50 **c.c. per** 100 shot time cycle.

Test 7-Maximum fuel delivery

Run the pump at 1,000 r.p.m. The average delivery for 200 shots from all four test injectors should be 2.9 ± 1 c.c. In arriving at this figure compare the delivery from all injectors to ensure that the difference in output between any two does not exceed 7 c.c. Before taking a reading allow the test oil to settle in measuring-glasses for 15 seconds and allow the glasses to drain for 30 seconds before a fresh test is made. If the fuel delivery is incorrect, turn off the test oil supply and remove the cover-plate from the side of the pump. Slacken the two drive plate screws and turn the pump drive until the slot in the periphery of the top adjusting plate is visible. Using tool 18G 656 engaged in the slot, tap the adjusting plate in the direction necessary to correct the fuel delivery. Movement of the adjusting plate in the direction of normal pump rotation will increase the output, and movement in the opposite direction will decrease output. This adjustment must be carried out very carefully as the amount of movement required will be very small. Tighten the drive plate screws to the torque figure given in 'GENERAL DATA', using torque adaptor 18G 655 A. When tightening the screws, the torque wrench and spanner must be in line (see Fig. C.17). After making the

Fig. C.16

Adjusting the maximumfuel setting, using maximum fuel adjusting probe **18***G* 656

adjustment replace the cover-plate and prime the pump as described in (82). Re-check the fuel delivery and, if necessary, re-adjust the pump output.

Test 8—Maximumfuel delivery check

Decrease the pump speed to 150 r.p.m. The average delivery for 200 shots should now be not less than that obtained in 'Test 7' minus 1.6 c.c.

Test 9-Cut-off operation

Run the pump at 200 **r.p.m.** with the shut-off lever in the fully closed position. The average delivery for 200 shots should not exceed \cdot 5 c.c.

Test 10-Throttle operation

Run the pump at 200 r.p.m. with the throttle arm in the fully closed position and the **shut**off lever in the **open position**. The **average** delivery for 200 shots should not exceed $\cdot 5$ c.c.

Test 11—Fuel delivery check

Run the pump at 1,250 **r.p.m.** with both the throttle and shut-off controls in their fully open positions. Record the average delivery for 200 shots.

Test 12—Governor setting

Increase the pump speed to 1,360 r.p.m. and set the throttle arm by means of the maximum speed stop screw to give a maximum average delivery of **8 c.c.** per 200 shots; no line should exceed **1.0 c.c.** Tighten the stop screw locknut.

Test 13—Fuel delivery check

Reduce the pump speed to 1,250 r.p.m. The average delivery for 200 shots should now be not less than that obtained in 'Test 11' minus -4 c.c.

Fig. C.17 Tightening the *drive plate screws*, using torque *wrench* 18G 537 and torque adaptor 18G 655 A. Torque wrench and spanner *must* be in *line* as shown

Fig. C.18

Scribing the timing mark on the fuel injection pump flange, using tool 18G 648 A

Test 14-Timing setting

After the foregoing tests have been completed, remove the pump from the test bench and mount flange marking gauge 18G 648A, preset to 84°, on the pump quill shaft. Using testing machine 18G 109 A and timing adaptor 18G 653 A, apply 100 atmospheres pressure to outlet 'V' in the hydraulic head while rotating the drive hub, by means of the marking gauge, in the direction of normal pump rotation. When resistance is encountered, hold the marking gauge steady on the pump mounting flange and mark the pump by drawing a scribing tool along the guide on the gauge. If necessary, delete the old timing mark from the pump flange before making the new mark. Finally, seal the cover-plate screws on the side of the pump, using wire, a lead seal, and sealing pliers 18G 541, and fit the correct highpressure connections to the hydraulic head.

Refitting

- (84) Crank the engine until No. 1 piston is at 16" B.T.D.C. on its compression stroke.
- (85) Insert timing gauge 18G 1052 into the injection pump chain wheel huh from the rear, engaging the splines on the tool with those in the driving flange.
- (86) Apply a gentle clockwise (as seen from the rear of the engine) pressure to the gauge to eliminate backlash and line up the timing pointer on the engine front plate with the mark cut in the timing gauge (see Fig. C.19).
- (87) Fit the injection pump, complete with highpressure pipes, to the engine. Align the pump scribe mark with the timing pointer and tighten the three securing nuts.
- (88) Connect the throttle and stop controls, ensuring that both the throttle arm and shut-off lever on the pump have their full range of movement.

Checking the position d the injection pump timing pointer, **using** timing gouge **18G** 1052

- (89) Connect the high-pressure pipes to the injectors, and the fuel feed and return pipes to the injection pump.
- (90) Bleed the fuel system as described in Section C.8.
- (91) Adjust the maximum and idling speeds as described in Section C.9.

Section C.7

FUEL INJECTORS

Removing

- (1) Disconnect the spill and high pressure pipes from the injectors.
- (2) Unscrew the securing nuts and remove the injector clamps.
- (3) Withdraw the injectors, using tool **18G** 284 and adaptor **18G** 284 P, and plug the injector holes in the cylinder head.

Dismantling

- (4) Mount the injector in dismantling fixture 18G 388.
- (5) Remove the injector cap-nut and the copper joint washer.
- (6) Slacken the locknut, unscrew the spring cap-nut, and remove the copper joint washer. spring, and spindle.
- (7) Unscrew the nozzle nut, using spanner **18G** 210, and remove the **nozzle** body and valve assembly.

Inspection

- (8) Wash all the components thoroughly in clean Shell Calibration Fluid 'C'.
- (9) Examine the spring for signs of weakness, rusting, or fracture, and ensure that the ends are perfectly square. Check the spindle for straightness.
- (10) Ensure that the face of the nozzle holder which contacts the nozzle is perfectly smooth and flat.
- (11) Using cleaning kit 18G 487, thoroughly clean the nozzle body and valve:

- (a) Clean all carbon from the nozzle valve and the outside of the body with the brass-wire brush.
- (b) Remove all foreign matter from inside the nozzle body by means of the shaped scrapers as shown in the illustrations.
- (c) Clear the auxiliary spray hole in the nozzle with the probing tool. The wire should be fitted into the tool so that it protrudes only about $\frac{1}{4\pi}$ in. (1.6 mm.).
- (12) Ensure that the lapped pressure face on **the** upper end of the nozzle is perfectly smooth **and** flat.
- (13) Fit the nozzle into adaptor 18G 109 E with the nozzle tip towards the small diameter connection. Attach the adaptor to testing machine 18G 109 A and operate the pumping lever several times, thus clearing the nozzle passages by reverse-flushing.

Fig. C.22 Withdrawing an injector, using tool 18G 284 and adaptor 18G 284 P

FUEL SYSTEM (Diesel Models)

- (14) In cases where the carbon deposit is particularly hard, it can be softened by boiling the nozzle bodies in a caustic solution:
 - (a) Dissolve 2 oz. (56.7 gm.) of caustic soda in 1 pint (57 litre) of water and add ½ oz. (14.2 gm.) of an ordinary washing detergent.
 - (b) Boil the nozzle bodies in the liquid for a minimum of 1 hour and not more than 1½ hours. Do not allow too much water to evaporate, because a concentration of caustic soda above 15 per cent. may cause roughness of the nozzle bore and seat which would make the nozzle unserviceable.
 - (c) Wash the nozzles in running water and immerse them in a dewatering oil such as Shell Ensis 254. Remove the surplus oil by draining or with compressed air, then remove the carbon as described in (11) and (13).
- (15) Examine the valve seat in the nozzle body through a nozzle microscope. The seat should not be

Testing the pintle and orifice for wear. The valve must not tilt ot a greater angle than 20° from the body centre-line

Section through a fuel injector

			-	
1.	Injector cap-nut.	7	7.	Nozzle body.
2.	Joint washer.	5	3.	Nozzle valve.
3.	Locknut.	9).	Spindle.
4.	Joint washer.	1	0.	Spring.
5.	Nozzle holder.	11	ι.	Washer.
6.	Nozzle nut.	12	2.	Spring cap-nut.

stepped, and should be free from scores and pitting.

- (16) Examine the conical surface which forms the seat of the nozzle valve through a nozzle microscope. The most critical part of the conical surface is where it forms an angle with the parallel stem. This angle should be sharp and clearly defined, with no rounding or wear breaking the knife-edge anywhere on its diameter. Check the pintle clearance as shown in Fig. **C.25**.
- (17) If all the components appear serviceable, assemble the injector as described in (32) and (33). Then adjust and test the injector as described in (34) to (43). Provided the wear is not excessive, an unserviceable nozzle body and valve can be reconditioned on a nozzle grinding and lapping machine as described in (18) to (31).

Reconditioning

(18) Select a nozzle lap from those supplied with the machine. The bore diameter varies slightly from one nozzle to another, and the lap chosen should fit the nozzle in the same manner as the nozzle valve to ensure concentricity of the valve seat and nozzle bore after lapping.

FUEL SYSTEM (Diesel Models)

Fig. C.27

Reverse-flushing an injector irozzle with testing machine 18G 109 A and adaptor 18G 109 E. A sectioned adaptor with a nozzle in position is shown inset

- (19) Mount the lap in the lathe of the machine and if the lap is pointed remove the tip to avoid damaging the pintle hole. Grind the conical end to the correct nozzle body seat angle of 59". Pass the lap slowly backwards and forwards across the grinding-wheel, feeding in the lap very gradually until its conical surface is entirely cleaned up. Inspect the lap under the nozzle microscope and, if the ground surface is rough, dress the grinding wheel and regrind the lap.
- (20) Fit the lap into the lapping chuck of the machine and apply a coating of tallow to the guide surface of the lap for lubrication.
- (21) Apply a small quantity of lapping paste to the tip of the lap, taking care that the paste does not extend to the parallel stem of the lap.
- (22) Start the **machine** and carefully slide the nozzle over the rotating lap. Oscillate the nozzle on the lap in very short strokes at a rate of 20 to 30 strokes per minute, engaging the nozzle seat with the lap at each stroke. Apply only light pressure to the nozzle and do not allow the nozzle seat to remain in contact with the lap for more than 5 seconds at a time.
- (23) After 30 seconds lapping time withdraw the nozzle, clean the lap, and examine the conical lap tip. There will be a mat surface where the lap has been in contact with the nozzle seat, and in the early stages of lapping this surface may be narrow or have a bright circumferential ring. These markings indicate the extent of the wear on the nozzle seat.
- (24) Reface the lap as described in (19) after every 1¹/₂ minutes of lapping time.
- (25) When the seat appears satisfactory after a few seconds' lapping with a freshly ground lap, use fine lapping paste to finish the seat off to a smooth mat surface. Lapping should be kept to a minimum because excessive lapping will allow the nozzle valve

Fig. C.28 Correct nozzle and valve seat angles

to seat in a lower position than the auxiliary spray hole and the **nozzle will** be useless.

- (26) Reverse-flush the nozzle as described in (13), dry it with compressed air, and make a final inspection under the nozzle microscope.
- (27) Make sure that the grinding-wheel is dressed correctly and adjust the refacing angle of the machine to 60" to suit the nozzle valve.
- (28) Mount the valve in the lathe of the machine and **reface** the conical seat. Be particularly careful not to damage the pintle end of the **valve by allowing** it to touch the grinding-wheel, and remove **only** the absolute minimum of material from the valve seat; just enough to change the colour of the seat, otherwise the nozzle valve lift (needle lift) will be increased. As a guide, there should be no sparks or hiss from the grinding-wheel when **refacing** the valve. Watch the **refacing** procedure through a magnifying-glass, focusing on the surface of the seat face away from the grinding-wheel.

Lopping a nozzle seat. The arrow indicates the bright circumferential ring which may be present on the lap in the early stages of lapping. A view of the seat and lap upon completion is shown inset

C.16

- (29) After refacing, inspect the valve under the nozzle microscope.
- (30) If, due to slight distortion or deposits on its guide surface, the valve is found to be a tight fit in the nozzle body, it can be corrected by lapping the guide surface of the valve. Mount the valve in the lapping chuck and lap the guide surface of the valve, using fine lapping paste and one of the collets supplied with the machine. A correctly fitting valve should just slide into the body under its own weight when lubricated with fuel oil.
- (31) After attention to either the nozzle body or valve seats, assemble the valve and body and check the needle lift against the **figure** in 'GENERAL DATA'. To correct excessive needle lift, lap the joint face of the nozzle body on a surface lapping plate. Be careful not to tilt the nozzle because the joint face must remain true and at right angles to the nozzle axis.

Reassembling

- (32) Wash all the components in clean Shell Calibration Fluid 'C'. and assemble the nozzle valve to the nozzle body while both components are immersed in the oil.
- (33) Fit the nozzle holder to dismantling fixture **18G** 388 and reverse the procedure in (5) to **(7)**, tightening the nozzle nut to the torque figure given in **'GENERAL DATA'.** Then adjust and test the injector as described in (34) to (43).

Adjusting and testing

Back-leakage rest

- (34) Connect the injector to testing machine 18G 109 A with the nozzle facing away from the operator and open the check valve to the pressure gauge.
- (35) Operate the pumping lever **and** observe the pressure at which injection occurs.
- (36) With the injector cap-nut removed adjust the spring **cap-nut** to give an injection pressure of I70 atmospheres.

Fig. C.30

Testing an injector for spray, using testing machine 18G 109 A and adaptor 18G 109 B

Fig. c.31

Reassembling a fuel injector, using fixture 18G 388, spanner 18G 210, andtorque wrench 18G 372

(37) Operate the pumping lever until the pressure gauge registers 160 atmospheres. Release the lever and time the pressure drop from 150 to 100 atmospheres. For a nozzle in good condition this time should he between 6 and 40 seconds.

Seat tightness test

(38) Adjust the spring cap-nut to give an injection pressure of 100 atmospheres. Dry the nozzle tip and depress the pumping lever until a pressure of 90 atmospheres is obtained. Maintain this pressure for 10 seconds and examine the nozzle tip for dryness. If in doubt, maintain the 90 atmospheres pressure for 60 seconds while holding a piece of blotting paper below the nozzle tip; the diameter of the wet spot on the paper should not exceed $\frac{1}{2}$ in. (13 mm.).

Adjustment and spray test

- (39) Adjust the spring cap-nut to give an injection pressure of 135 atmospheres, tighten the locknut, and re-check the injection pressure. Fit the injector cap-nut and joint washer.
- (40) Connect adaptor **18G** 109 B to the testing machine in place of the injector and adjust the adaptor opening pressure to 220 atmospheres.
- (41) Connect the injector to the adaptor and close the check valve to the pressure gauge.
- (42) Operate the pumping lever at about 60 strokes a minute and observe the auxiliary spray. This should be well formed and free from splits or distortions. A slight central core may be disregarded.
- (43) Increase the operating speed to about 140 strokes a minute and observe the main spray. This should be well atomized and free from large splits or distortion. A slight central core may be disregarded.

C

Refitting

- (44) Reverse the procedure in (1) to (3), noting the following:
 - (a) Renew both sealing washers on each injector. One washer passes over the nozzle and seals between the nozzle nut and the heat shield flange. The second washer (atomizer seal washer) seals between the nozzle face and the bottom of the heat shield; this washer should be fitted with its two edges downwards.
 - (b) Tighten the injector clamp nuts to the torque figure given in 'GENERAL DATA'.
 - (c) Bleed the fuel system as described in Section **C.8.**

- (1) Ensure that the stop control is fully home in the run position and remove the sealing cap from the maximum speed stop screw.
- (2) Run the engine until it has attained its normal running temperature.
- (3) Slacken the locknut and adjust the maximum speed stop screw to set the engine maximum light running speed at 2,750 r.p.m. This will give the engine a maximum governed speed under load of 2,500 r.p.m. Tighten the locknut.
- (4) Fit the sealing cap and seal it with wire and a lead seal, using sealing pliers 18G 541.
- (5) Adjust the idling stop screw to give an idling speed of 600 **r.p.m.** and tighten the locknut.

Section C.9

MAXIMUM AND IDLING SPEED ADJUSTMENT

Before making either of these adjustments ensure that the engine air cleaner is correctly serviced and fitted.

NOTE.—Adjustment of the maximum fuel setting **will** alter the pump timing in relation to the mark on the pump mounting flange; therefore, after adjustment of the **maxi**mum fuel setting, the mounting flange should **be** remarked as described in Section **C.6** (83), Test 14.

SAO TRANSMISSION

	Page NO.
DESCRIPTION	46
OPERATION	46
TROUBLE SHOOTING	46
DISASSEMBLY OF SAO TRANSMISSION	46
REMOVAL OF REDUCTION GEAR ASSEMBLY FROM REVERSE GEAR HOUSING IF INSTALLED	48
REMOVAL OF REVERSE GEAR HOUSING ASSEMBLY FROM ENGINE	51
REMOVAL OF GEAR CASE ASSEMBLY FROM REVERSE GEAR HOUSING	51
DISASSEMBLY OF GEAR CASE	52
INSPECTION	53
ASSEMBLY OF GEAR CASE	53
ASSEMBLY OF REVERSE GEAR CASE IN REVERSE GEAR HOUSING	55
ASSEMBLE TRANSMISSION TO ENGINE	56
ASSEMBLY OF REDUCTION GEAR ASSEMBLY TO REVERSE GEAR HOUSING ASSEMBLY	56
ADJUSTMENTS	57
REDUCTION UNIT	59

SAO TRANSMISSION

DESCRIPTION

The Westerbeke Paragon manually operated reverse gear units consist of a multiple disc clutch and a planetary reverse gear train. The units are self contained and are independent of the engine lubrication system.

OPERATION

On the forward drive, the reverse gear case and multiple disc clutch are locked together as a solid coupling. The multiple disc clutch is locked or clamped by the pressure produced when the shift lever is moved to the forward position. Thus the propeller shaft turns in the same direction as the engine.

The reverse drive is obtained by clamping the reverse band around the reverse gear case which contains the planetary reverse gear train. The reverse band is clamped when the shift lever is moved and held in the reverse position. The reverse motion is then obtained by driving through the gears thus turning the propeller shaft opposite to the engine rotation.

With the shift lever in the neutral position the multiple disc clutch and the reverse band are unclamped and the planet gears run idle and the propeller shaft remains stationary.

It is desirable to start the engine with the transmission in neutral, thus avoiding moving the boat in either direction.

It is recommended that the shifting be done at speeds below 1000 RPM and preferably in the 800 RPM range or lower to prolong the life of the engine, transmission and of the boat.

TROUBLE SHOOTING

The trouble shooting charts below and on the next page should be studied and the suggestions carried out prior to any disassembly to determine as well as possible what the trouble may be. Also, the exploded views and the accompanying discussions should be carefully read and understood so that any or all of the service work as indicated from the trouble shooting charts may be carried out properly.

DISASSEMBLY OF SAO TRANSMISSION

As in any servicing operation, cleanliness is a must and all rules for good workmanship apply. Some of these rules are as follows:

- 1. Use only clean fluid in any cleaning or washing of parts.
- 2. Use only clean oil for lubrication when pressing parts together.
- 3. Never use a hammer to drive ball bearings in place.
- 4. Never press a ball bearing so that the force is carried through the balls.
- 5. Use only properly sized wrenches in removing or securing nuts and capscrews.
- 6. Replace gaskets and "O" rings with new material.
- 7. Work on a clean bench and protect gear teeth and oil seal surfaces from nicks and scratches.

7

NOTE: Remove the reverse and reduction gear as a complete unit before **removing** the oil to avoid fouling the bilges.

TROUBLE SHOOTING CHARTS

TROUBLE SHOOTING CHART

NOTE: Disassembly need be carried out only as far as is necessary to correct those difficulties which interfere with proper marine gear operation.

REMOVAL OF REDUCTION GEAR ASSEMBLY FROM REVERSE GEAR HOUSING IF INSTALLED

NOTE: Remove the reverse gear with reduction gear attached as a complete unit before draining oil, to avoid fouling the bilges.

- 1. Remove starter motor
- 2. Disconnect propeller half coupling and slide back approximately 4 inches.
- 3. Remove capscrews securing reverse gear to bellhousing.
- 4. Strike gear half coupling flange with soft mallet to break reverse gear from bellhousing. Slide entire reverse and reduction gear streight back approximately **3** inches until reverse gear clears bellhousing and lift units clear of engine.

(Refer to "Reduction Gear" section of manual for disassembly and assembly of reduction unit.)

Cross Section of 2:1 Reduction Gear Shown

DRAWING NO. 13914

REMOVAL OF REVERSE GEAR HOUSING ASSEMBLY FROM ENGINE

- 1. Remove capscrews and lockwashers that secure reverse gear housing (3) to front end plate (5).
- 2. Slide entire reverse gear housing (3) straight back approximately 3 inches until housing is clear of front plate engine gear (1) and lift reverse gear housing assembly clear of front plate (5).
- 3. Remove pilot roller bearing (60) from front plate engine gear (1) if it remains on gear.
- 4. If necessary to replace front end plate (5), oil seal (22), or bearing (37) proceed as follows:
 - a. Remove capscrews and lockwashers securing front end plate (5) to engine flywheel housing.
 - b. Slide front end plate (5) straight back approximately two inches until front plate engine gear (1) is clear of flywheel housing, and lift clear of engine.
 - c. Remove retaining ring (36), bearing (37), retaining ring (35) and oil seal (22).
 - d. **Replace new** oil seal and bearing if required.

REMOVAL OF GEAR CASE ASSEMBLY FROM REVERSE GEAR HOUSING

REDUCTION MODEL

- 1. Remove four capscrews, cover seals (33), cover (10), and gasket (4) from reverse gear housing (3).
- 2. Through cover opening in reverse gear housing (3), remove nut (70), lockwasher and screw, securing adjustment nut lockspring (68) to ear of brake band assembly (62). Remove lock spring.
- 3. Remove adjustment nut (66) from reverse cam (65). Remove reverse cam (65) from eye in yoke (34) and slide out reverse cam (65) from reverse cam slide assembly (63).
- 4. Remove cross shaft (13) from reverse gear housing (3) as follows:
 - a. Loosen the two capscrews securing the yoke (34) to the cross shaft (13).
 - b. With small end of housing toward mechanic, slide cross shaft (13) from left to right being careful cross shaft. doesn't come in contact with operating sleeve bearing (50), or Woodruff key (26) in cross shaft under yoke arm (34) isn't forced against cross shaft oil seal (20) in right side of housing. Remove the two Woodruff keys from cross shaft.
 - c. Slide cross shaft out of housing and remove brace (67) and lift yoke (34) from operating sleeve (50).
- 5. On dipstick side of housing remove roll pin (24) securing brake band locking pin (12) that secures brake band to housing. Remove locking pin and inspect "O" ring (23) and replace if damaged.
- 6. Slide brake band (62) from gear case assembly (41) and remove band from front of housing.
- 7. Remove cotter pin and nut (18-2) from reverse gear tailshaft (2-2).
- 8. Support reverse gear housing (3) with front end down so that gear case (41) may drop free approximately two inches.
- 9. Press on reverse gear tailshaft (2-2) until tailshaft is free of reduction drive gear (87).
- 10. Lift reverse gear housing (3) straight up until housing clears tailshaft (2-2).

- Remove capscrews and lockwashers that secure reduction adapter plate (85) to reverse gear housing (3).
 - a. Remove reduction adapter plate with attached bearing (88) and reduction drive gear (87).
 - b. Press bearing with drive gear from adapter plate.
 - c. Press bearing from drive gear.

DIRECT DRIVE UNIT (perform procedures 1 through 6 above)

- 12. Bend tang of lockwasher (19) away from locknut (18-1) and remove nut from reverse gear tailshaft (2-1), by holding gear half coupling (14) with spanner wrench. Remove lockwasher.
- 13. Support reverse gear housing (3) face down so that gear case may drop free approximately 2 inches.
- Press on reverse gear tailshaft (2-1) until tailshaft is free of gear half coupling (14). Lift reverse gear housing (3) straight up from gear case assembly (41) until housing clears tailshaft (2-1).
- 15. Remove capscrews and lockwashers that secure direct drive plate (15) to reverse gear housing (3).
 - a. Remove direct drive plate (15) with attached bearing (25) and gear half coupling (14) from reverse gear housing (3).
 - b. Press gear half coupling from bearing.
 - c. Press bearing from drive plate.
 - d. If necessary to replace, remove oil seal (21) from direct drive plate.

DISASSEMBLY OF GEAR CASE

- 1. Remove thrust washer (16-2) and retainer ring (6) from end of reverse gear tailshaft on reduction units, and Woodruff key (27), seal washer (6) and thrust washer (16-1) from end of tailshaft on direct drive units.
- 2 Remove lockscrew (55) and lockwasher from screw collar (53) and remove screw collar from gear case by unscrewing. Lift operating sleeve assembly (50) from tailshaft when removing screw collar.
- 3. Lift pressure plate (49) and clutch plates (48) and (54) from erd of gear case.
- Properly support gear case on clutch plate carrier and press tailshaft (2-1) or (2-2) from propeller gear (43) and clutch plate carrier. Lift clutch plate carrier from gear case.
- 5. Remove case ball bearing retaining ring (59) from groove in gear case.
- 6. Remove capscrews (14) and lockwashers (13) and case bushing (23) from gear case.
- 7. Before removal of the short or long pinions is attempted, first inspect the gear teeth for indication of wear. Also, rotate each pinion to check for rough spots during rotation. If further inspection or replacement is necessary, proceed with the disassembly. However, do not disassemble unless required.
- 8. Drive pinion shaft (20) of one of the short pinions (22) from threaded end of gear case approximately 1/2 inch. Push pinion shaft on through with a dummy shaft.
- 9. Push dummy shaft until centerec in short pinion (46) and short pinion spacer (56). Remove pinion shaft (42) from front end of gear case.
- 10. Remove remaining short pinions (46) from gear case.
- 11. Press propeller gear (43) from the case ball bearing (58).
- 12. Remove long pinions (44) using dummy shaft as in removing short pinions.

NOTE: Bushings are pressed into the long and short pinions.

INSPECTION

All parts should be thoroughly cleaned before inspection. Parts showing excessive wear should be replaced.

- 1. Ball and roller bearings should be examined for indication of corrosion and pitting on balls or routers and races.
- 2. Long and short pinion bushings should be examined for wear.
- 3. Pinion shafts should be examined for wear or "brinelling".
- 4. Long and short pinion spacers should be examined for wear.
- 5. Long and short pinion bore diameters should be examined for wear.
- 6. All gear teeth should be examined for "pitch line pitting", unever wear pattern or excessive wear.
- 7. All shafts should be examined for wear on splines and shoulders.
- 8. Clutch plates should be examined for flatness, roughness, indicating of excessive heating and wear or peening of driving lugs.
- 9. Clutch plate carrier should be examined for wear and peening of lugs and splines.
- 10. Examine all oil seals for rough or charred lips.
- 11. Reverse band links, pins, etc. should be examined for wear or bending.
- 12. Reverse band lining should be examined for wear.
- NOTE: Lining should be replaced before rivets come in contact with gear case.
 - 13. Gear case should be examined for wear from reverse band linking, short or long pinions wearing into inside faces or wear in clutch plate slots on threaded end.
 - 14. Screw collar and finger assembly should be examined for wear.
 - 15. Pressure plate should be examined for wear.
 - 16. All old gaskets should be replaced.
 - 17. Operating sleeve assembly should be examined for wear.
 - 18. Engine gear should be examined for wear on oil seal surfaces, case roller bearing race, pilot bearing race and gear teeth for "pitch line pitting", uneven wear or excessive wear.

NOTE: When uneven gear teeth wear has been noticed, check engine gear for eccentricity. Maximum eccentricity at pilot bearing race is ,005 inches.

19. Where special vibration dampers are used as flexible couplings, check springs and splines for wear.

ASSEMBLY OF GEAR CASE

- 1. If pinion gears (45) and (46) bushings (21), and pinion shafts (42) were removed from gear case (41), assembled as follows:
 - a. Insert dummy shaft into long pinion (44).
- NOTE: Use same dummy shaft as used in disassembly.
 - b. Insert four bushings (21) equally spaced around dummy shaft to center shaft in gear; then assemble remaining bushings.

NOTE: Smear dummy shaft with cup grease to prevent bushings from dropping out. Install bushing spacer (56) in gear next to first row of bushings.

c. Lay gear case (41) on side and insert long pinion (44) in case to align with hole in outer row.

- d. Insert pinion shaft (42) plain end first, into unthreaded end of gear case and push through pinion as far as rear wall of gear case, forcing out the dummy shaft.
- e. Remove dummy shaft, and start pinion shaft into rear wall of case. Do not drive pinion shaft all the way into gear case until all shafts are inserted.
- f. Assemble remaining long pinions in gear case.
- g. Using dummy shaft, insert short bushings (47) into short pinion (46) in same manner covered in paragraphs a and b above. With short pinion, use pinion spacer (56).
- h. Insert short pinion (46) into gear case, pinion toward front of case, to line up with hole in inner row and insert pinion shaft (20) as described in d above.
- i. Assemble remaining short pinions in gear case.
- 2. Assemble case bushing (23) to gear case with edges of race in line with flats on pinion shafts. Replace lockwashers (13) and capscrews (14).
- 3. Insert propeller gear (24) through rear of gear case in mesh with long pinions.
- 4. Press case ball bearing (58) into gear case and onto propeller gear by supporting entire assembly on propeller gear inside front end of gear case. Make certain that case ball bearing is seated properly on propeller gear and into gear case. Install case ball bearing retaining ring (59) in groove in gear case next to case ball bearing.
- 5. Press clutch plate carrier (27) onto reverse gear tailshaft (2-1) or (2-2).
- 6. Align splines on reverse gear tailshaft and press tailshaft through propeller gear until propeller gear is seated against the clutch plate carrier already on tailshaft. Support the entire assembly on propeller gear inside front end of gear case during pressing operation.
- 7. Place Woodruff key (61) on end of tailshaft inside propeller gear.
- 8. Install clutch plates in clutch plate cavity in rear of gear case starting first with bronze clutch plate (54) and alternating steel plate (34) and bronze clutch plate.
- 9. Install pressure plate (49) on top of last bronze clutch plate in clutch plate cavity.

NOTE: Make certain that all plates ride freely and that no binding is apparent during assembly.

- 10. Assemble finger assembly (52) to screw collar (53) using finger pins (51) and securing with cotter pins.
- 11. Thread screw collar (53) onto gear case assembly (41) approximately half of the thread length.
- 12. Place operating sleeve assembly (50) onto tailshaft. Position ball ends of finger assembly over sleeve assembly.
- 13. Continue screwing screw collar onto gear case (41) until finger assembly will snap over center and lock into position against the shoulder of the pressure plate (49).
- 14. Push operating sleeve assembly (50) forward until finger assemblies are free.
- 15. Place lockwasher over end of lockscrew (55) and thread lockscrew into one hole near edge of screw collar (53). Rotate screw collar until dog on end of lockscrew lines up with closest hole in pressure plate.
- 16. On reduction tailshafts, install retaining ring on reverse gear tailshaft making certain that retaining ring is seated properly in groove in reverse gear tailshaft.

CAUTION: The forward clutch is not properly adjusted at the end of this assembly. Proper adjustment is made after installation in boat is complete. Follow instructions as outlined under section on adjustments.

ASSEMBLY OF REVERSE GEAR CASE IN REVERSE GEAR HOUSING

REDUCTION MODEL

- 1. Place new gaskets (8), (7), and (4) on front, rear, and top of reverse gear housing (3).
- 2. If removed for replacement, install new oil seals (20) in cross shaft holes in housing.
- 3. Support gear case assembly (41) on propeller gear (43) inside front end of gear case so that reverse gear housing (3) will not rest on face when lowered over gear case assembly.
- 4. Lower reverse gear housing (3) over gear case assembly with reverse gear tailshaft (2-2) protruding through bore in rear of housing.
- 5. Place thrust washer (16-2) with counter-bored side down over reverse gear tailshaft (2-2). (Make certain that thrust washer seats properly on shoulder of retaining ring (6) on tailshaft (2-2.)
- 6. Press reduction drive gear (87) into ball bearing (88).
- 7. Place new gasket (8) on reverse gear housing (3) and press reduction drive gear (87) and ball bearing (88) on reverse gear tailshaft (2-2) until ball bearing is seated against thrust washer (16-2). Thread on reverse gear tailshaft nut (18-2).
- 8. Press reduction gear adapter plate (85) over ball bearing and secure with necessary bolts.
- **9.** Install reduction gear crescent (74).
- 10. Tighten **all** capscrews. Tighten reverse gear tailshaft nut (18-2) until cotter pin can be installed through castellation in nut and hole in reverse gear tailshaft.
- 11. Install cotter pin and bedn erids over nut.
- 12, Place new gasket (72) on reduction adapter plate (85).
- 13. Jnstall brake band assembly (62) onto gear case assembly (41) in reverse gear housing.
- 14. With reduction adapter plate (85) facing mechanic, insert yoke (34) through cover opening in housing placing forked arms of yoke over pins of operating sleeve assembly (50). Ensure part number of yoke is facing mechanic.
- 15. Align and hold hole in brace (67) on inside right hole in yoke and push cross shaft through yoke and brace to left side of housing.
- 16. Pull cross shaft out from right side of housing approximately one inch and insert Woodruff key in cross shaft to the right of each yoke hole to position yoke to cross shaft.
- 17. Secure yoke to cross shaft by tightening the two cap screws in yoke.
- 18. Slide reverse cam (65) through reverse cam slide assembly (63) and in hole in arm of yoke (34).
- 19. Position pin in brake band (62) in hole in brace (67).
- 20. Replace and tighten adjustment nut (66) to reverse cam slide assembly (63).
- 21'. Secure lock spring (68) over adjustment nut (66) with screw, lockwasher and nut (70).

DIRECT DRIVE UNIT

22. After paragraph 4 above place thrust washer (16-1) over reverse gear tailshaft. Place seal washer (6) over reverse gear tailshaft against thrust

washer and install Woodruff key (27) in keyway in tailshaft.

- 23. If removed for replacement, press new oil seal (21) into direct drive plate (15). Press ball bearing (25) into direct drive plate.
 24. Place direct drive plate, oil seal and ball bearing assembly on suitable
- 24. Place direct drive plate, oil seal and ball bearing assembly on suitable support and press gear half coupling (14) into oil seal (21) and ball bearing (25) until gear half coupling is seated against ball bearing. Care must be taken not to damage oil seal during assembly.
- 25. Align direct drive plate and gear half coupling up with key in reverse gear tailshaft and press together until ball bearing is. seated against thrust washer (16-1).
- 26. Place lockwasher (19) over reverse gear tailshaft with tang in keyway in gear half coupling and thread locknut (18-1) on reverse gear tailshaft.
- 27. Install lockwashers and capscrews in holes in direct drive plate and bolt to reverse gear housing.
- 28. Tighten all capscrews. Tighten locknut (18-1) and bend up one tang on lockwasher (19) over locknut.
- 29. Continue with paragraphs 13 through 20.

ASSEMBLE TRANSMISSION TO ENGINE

- 1. If front end plate (5) was removed from reverse gear housing (3) or engine flywheel housing proceed as follows:
 - a. Replace oil seal (22) or bearing (37) if necessary.
 - b. Slide engine gear (1) into flywheel housing damper spline.
 - c. Align mounting holes in front end plate (5) with holes in flywheel housing and secure with lockwashers and capscrews.
 - d. After installing on engine, check engine gear for runout. Maximum eccentricity is .005 inches at pilot roller bearing.

1

ļ

- 2. Insert two studs three inches long in two opposite bolt holes in front end plate (5).
- 3. Check to be certain that pilot roller bearing (60) is properly installed in propeller gear inside gear case.
- 4. Start reverse gear housing (3) over the two studs and slide housing over engine gear (1) right up against flywheel housing. It may be necessary to rotate gear case slightly to properly mesh teeth on engine gear and short pinions in gear case.
- 5. Install lockwashers and capscrews in holes around flange of houeing.
- 6. Remove the two studs and install remaining lockwashers and capscrews. Tighten all capscrews.

ASSEMBLY OF REDUCTION GEAR ASSEMBLY TO REVERSE GEAR HOUSING ASSEMBLY

NOTE: Refer to reduction gear assembly and disassembly procedures.

- 1. Install two studs 31/2 inches long in two opposite holes in reduction adapter plate.
- 2. Position reduction gear assembly over studs with oil drain plug at bottom and slide onto reduction drive gear. It may be necessary to rotate reduction ring gear slightly to properly mesh gear teeth.
- 3. Install lockwashers and capscrews around flange of reduction gear housing and tighten uniformly.

ADJUSTMENTS

- 1. With the transmission secured to the engine, replace all water lines, etc. However, do not connect the shifting 'linkage until all of the adjustments' have been made and are satisfactorily tested.
- 2. After securing the propeller half coupling to the gear half coupling, check the alignment.
- 3. The transmission should be filled with new oil as specified. Be certain to replace any oil that was removed from the engine.
- 4. The transmission can be partially adjusted before the engine has been run. However, a complete running test is necessary to satisfactorily determine whether the adjustments have been properly made.

The preliminary adjustments for the forward drive are made as follows:

- Back out the lockscrew (55) until the dog on the end of the lockscrew is clear of the hole in the pressure plate (49).
 Rotate the screw collar (53) to the right until the lockscrew (55) is opportion.
- 2. Rotate the screw collar (53) to the right until the lockscrew (55) is opposite the next hole in the pressure plate (49).
- 3. Tighten the lockscrew making certain that the dog on the end properly enters the hole in the pressure plate.
- 4. Continue this until a decided effort is required to shift into forward.

The preliminary adjustments for the reverse drive are made as follows:

- 1. Loosen the locknut (70) on the inside of the upright ear at the top of the reverse band.
- 2 Tighten the adjusting nut (66) on the outside of the ear until both nuts are again tight against the ear of the reverse band.
- 3. Repeat until a decided snap is required to shift into reverse.
- 4. Replace gasket (4), cover (10) and secure to reverse gear housing with capscrews and cover seals. The transmission is ready for a preliminary test which may be done at dockside.
- 5. Check all of the mooring lines before continuing the test.
- 6. With the engine running at idle speed, shift the transmission into forward and reverse noting how well the transmission responds.
- 7. If the transmission does not engage in one or both of the forward or reverse positions further dockside adjustments are necessary. Continue the adjustments as outlined above until the transmission will engage in both forward and reverse drives.

A complete running test is necessary to determine that the transmission is properly adjusted. The transmission should not slip or break away under full power conditions in the forward drive and should hold in reverse under all normal reversing conditions.

If further adjustments are necessary, continue the adjustments as outlined above until satisfactory operation is reached. It should be noted however, that the adjustments should be carried out only until satisfactory operation is reached since it is possible to over-adjust the transmission. If the transmission is **over**adjusted, it will be more difficult to shift into forward and reverse and the parts will be heavily stressed and subject to early fatigue failure. Therefore, once the preliminary adjustments have been made, only a very small amount of adjustment will be necessary for either forward or reverse. Usually, an adjustment of a half a step on the forward, or at the most, a full step is required for full adjustment. Only a very small adjustment is required for the reverse drive. On the forward drive, a full step of adjustment is as outlined above or is made by loosening the lockscrew (55) and rotating the screw collar (53) to the right until the next hole in the pressure plate (49) can be lined up under the lockscrew. A half a step is made by taking the lockscrew out of the hole that it is in and placing it in the hole adjoining it in the screw collar. Then rotate the screw collar fo the right until the next hole in the pressure plate is lined up under the dog of the lockscrew. Make certain that the lockscrew enters the hole properly or it will bind up the forward clutch.

When the transmission is properly adjusted, replace the cover and secure all external bolts and fasteners. Before replacing the shifting linkage, check to make certain that it operates freely and does not bind or drag. Replace the linkage on the transmission shift lever and secure properly.

REDUCTION GEARS

DESCRIPTION

The Westerbeke/Paragon reduction gears consist of an internal ring gear and a drive gear that offers a variety of reduction ratios.

ADJUSTMENTS

There are no adjustments necessary to maintain the reduction gears in proper running condition.

DISASSEMBLY OF REDUCTION UNIT

NOTE: Disassembly need be carried out only as far as necessary to correct those difficulties which interfere with proper marine gear operation.

Remove reverse and reduction gear as a complete unit before removing the oil to avoid fouling the bilges.

- 1. Remove oil drain plug from bottom of reduction gear housing (86) and drain oil from unit. Make certain that all lubricating oil is removed from reverse gear unit.
- 2. Remove capscrews and lockwashers from flange of reduction gear housing and slide entire reduction unit straight back approximately 3 inches until reduction unit clears reduction drive pinion.
- 3. Bend tang of lockwasher (78) away from locknut (77). Remove locknut using suitable wrench and lift lockwasher from shaft.
- 4. Remove gear half coupling (75) with gear type puller or by supporting entire assembly under flange of gear half coupling and press against shaft to force coupling from assembly.
- 5. Support reduction gear housing so that flanged shaft assembly can drop free approximately 2 inches and press flanged shaft assembly from reduction gear housing.
- 6. Remove retaining ring (76) from groove next to ball bearing (84) inside reduction gear housing and press ball bearing from housing.
- 7. If necessary to replace, remove oil seal (79).
- 8. Remove Woodruff key (80) from flanged shaft and remove seal washer (74) and spacer (73).
- 9. Press ball bearing (84) from flanged shaft using two holes in flange.
- 10. Remove capscrews and lockwashers from rim of flanged shaft and remove ring gear (71) from flanged shaft.

INSPECTION

All parts should be thoroughly cleaned before inspection. Parts showing excessive wear should be replaced.

- 1. Ball bearings should be examined for indications of corrosion and pitting on balls and races.
- 2. All gear teeth should be examined for "pitch line pitting", uneven wear pattern or excessive wear.
- 3. Examine oil seal for rough or charred lips.
- 4. Retaining rings should be checked for burrs or deformities.
- 5. All gaskets should be replaced.

ASSEMBLY OF REDUCTION UNIT

- 1. Replace oil drain plug into reduction gear housing (86).
- 2. Press ball bearing (84) into reduction gear housing (86) and install retaining ring (76) into groove next to ball bearing.

- 3. If removed for replacement, press new oil seal (79) into reduction gear housing.
- 4. Place flanged shaft over ring gear (71) and line up holes in flange with those in ring gear.
- 5. Place lockwasher over capscrew and insert capscrew into hole in flanged shaft and secure flanged shaft to ring gear.
- 6. Press ball bearing (84) onto flanged shaft. Place spacer (73) over shaft next to ball bearing and place seal washer (74) over shaft next to spacer.
 7. Let all We due files (80) into heaving flanged about
- 7. Install Woodruff key (80) into keyway in flanged shaft.
- 8. Place reduction gear housing over small end of flanged shaft and start ball bearing (84) on flanged shaft into bore in housing by tapping housing with a soft mallet.
- **9.** Turn unit over with small end of housing down and press on center of flanged shaft until spacer (73) is seated against ball bearing (84) in reduction housing.
- 10. Support unit on inside of flanged shaft with large end of unit down and press gear half coupling (75) onto shaft end and into ball bearing until coupling is seated against ball bearing. Care must be taken to line up keyway in coupling and key in shafi before pressing together.
- 11. Place lockwasher (78) over end of flanged shaft with tang on inside of lockwasher in slot on flanged shaft. Place locknut (77) onto shaft and secure using suitable wrench.
- 12. Bend one tang of lockwasher into slot on locknut.
- Install two studs 3 1/2 inches long into two opposite holes in reduction adapter plate.
- 14. Position reduction gear assembly over studs with oil drain plug at bottom of housing and slide onto reduction drive gear. It may be necessary to rotate reduction gear slightly to properly mesh gear teeth.
- Install lockwashers and capscrews around flange of reduction gear housing and tighten uniformly.

OWNERS NOTES

MODEL SS TRANSMISSION

Model SS Transmissions are made for both right and left handed engines. As fitted to model Four-60 Diesel Model SSL is used. It is suited to a left hand engine and turns a right hand propeller. It is available in two ratios:

Model SSL = 13 (1.3 : | Ratio)

Model SSL - 20 (2 : I Ratio)

It is differentiated from the Model SSR - 20 (For right handed engines) by having the clutch lever on the left hand side. It is also notable that when fitted to Model Four-60 the water pump is omitted from the high speed shaft of the transmission.

SSL TRANSMISSION

The SSL Transmission is designed and built for marine use. The three position hand lever (optional) operates the gear to give ahead, neutral or astern action. With the shift lever mounted in the normal slant position, the transmission is in FORWARD gear when the shift lever is moved aft or in REVERSE when shift lever is moved forward.

SSL is available in 2 ratios 1.3:1 or 2.1. The propeller turns a right hand gear which is the opposite direction to that of the engine.

No adjustments are required. The only maintenance is to check the lubricating oil level and change the lubricating oil at time periods specified.

REMOVAL OF SSL REVERSE GEAR ASSEMBLY FROM ENGINE

- 1. Disconnect shift cable from transmission.
- 2. Remove the capscrews and lockwashers, securing the drive shaft half coupling to the propeller half coupling.
- Slide propeller shaft back away from drive shaft. 3.
- 4. Remove the capscrews and lockwashers securing reverse gear housing to flywheel housing adapter plate
- Slide reverse gear housing straight 'back approximately three inches until 5. shaft clears adapter plate and lift reverse gear housing assembly clear of engine.
- Drain oil from reverse gear housing. 6.

DISASSEMBLY PROCEDURES

- 1. Remove waterpump (54). – Not applicable on Model Four-60
- 2. Remove Woodruff key from reverse gear engine shaft.
- Remove four capscrews securing front end plate (1) to housing. 3.
- Remove front plate (1) containing bearing (16), snap ring (17), seal (18), 4. bearing (23). Protect seal by tape over key slot in shaft.
- 5. Lift out shaft (15) which has pump shaft (22) screwed into rear end. Bearing (20) and race (19) are now removable.
- 6. Remove race (30), bearing (32), gear (26) containing bearing (28), and washer (25).
- 7. Drive forward pin (48) into box, using flat end punch.
- Rotate arm (43) to rear, allowing dog (24) to move forward and off shaft. 8. Remove shoe (52).
- 9. Remove nut (41), washer (40), O-ring (39), coupling. (38), and key (37). 10. Support housing on front face. Press shaft (23) forward out of bearing (34).
- 11. Remove snap ring (33) from shaft. Remove washers (31), bearing (32), gear (27) containing bearing (28), and washer (25).
- 12. Knock out pin (44). Remove handle (43), slide shaft (42) into housing. Remove detent plate (49), springs (47), and spring washers (46).

ļ

- 13. Drive pin (51) into shaft (9) with flat end punch.
- 14. Remove shaft (9) with associated gear (12), washers (13). bearings (14), pin (10), and O-ring (11).
- 15. Remove bearings, seals, snap rings from respective housings and gears as necessary. Press seals and bearings with suitable tools. Do not use hammer.
- 16. Reassemble in reverse order, replacing seals, gaskets, and O-rings. Be sure to protect input shaft seal by covering input shaft keyway with tape or something similar.
- 17. Align propeller shaft half coupling to reverse gear assembly half coupling

Cross Section: SSL TRANSMISSION

NOTES ON USING THIS PARTS LIST

- 1. Unit of issue for all linear commodities is inches (not feet or yards).
- 2. Start looking in the contents -- if you cannot find any itern, check miscellan-eous page.
- Please -- Report errors and omissions to us via speed letter. (Attention: John H. Westerbeke, Jr.)

Ĺ

MODEL FOUR-60

CONTENTS

Block(Internal)	200
Block (External)	202
Crankshaft - Camshaft - Rod	204
Injection Pump Drive System	206
Cylinder Head	208
Rocker Shaft - Valve Cover	210
Lube Oil Pump - Strainer - Filter	212
Lube Oil Sump	214
Fresh Water Pump	216
Cooling System	218
Fuel System	220
Electrical System	222
Mounts	226
Back End Arrangements	228
Type SAO Transmission	230
Freewheeling Sailing Transmission	234
Type SS Transmission	238
Raw Water Pump	242
Miscellaneous	244

.

.

•

FOUR 601 BLOCK (INTERNAL)

REF	PN	NAME	REMARKS
1-1 1-2	12991 15452	ENGINE BLOCK	LESS FLYWHEEL/BACKPLATE/SUMP/MANIFOLUS ASSEMBLY MAIN READING OAR
3 A	15430		MAIN BEARING CAP
5	15396	nWFI	MAIN REARING CAP
6	15451	LINFR	CAMSHAFT BEARING
7	14555	COREPLUG	
8	14593	PLUG	CHANKCASE OIL GALLERY
9	15481	PLUG	OIL RELEASE VALVE PASSAGE
10	15434	PLUG	CHAIN TENSIONER AND OIL PUMP GEAR FEED
11	14433	PLUG	OIL PUMP GEAR FEED 🖛 HEAR FACE
12	15347	PLUG	MAIN OIL FEED REAR FACE
13	15490	STUD	CYLINDER HEAD - LONG
14	15491	STUD	CYLINDER HEAD - SHORT
15	15492	STUD	FUEL PUMP
16	15439	DOWEL	BACKPLATE
17	15346	LINER	
18-1	15449	P STON ASSY	SET OF FOUR STANDARD
18-2	15450	PISTON ASSY	SET OF FOUR , 010" D/S
19-1	15453	RING SET	FUR ONE PISTON A STANDARD
19-2	15454	RING SET	FOR ONE PISTON010" O/S
20	15396	PIN	PLSION
21	15469	RING	PISTON PIN RETAINING

FOUR 601 BLOCK (EXTERNAL)

REF	PN	NAME	REMARKS
1	15390	COVER	TIMING
2	14643	SEAL	OIL
3	15549	DAMPER	INJECTION PUMP DRIVE CHAIN
4	15496	STUD	DAMPER
5	15350	LOCKWASHER	
7	1535 <u>1</u>	INDICATOR	TIMING
9	15410	DAMPER	CAMSHAFT DRIVE CHAIN
10	15407	LOCKWASHER	
12	15391	GASKET	TIMING COVEH TO FRONT PLATE
24	13526	COVER	CYLINDER SIDE
25	14562	GASKET	
27	14564	RUSHING	
28	14563	WASHER	
29	15397	PLATE	FHONT
30	15348	DOWEL	TAPPED
31	15385	GASKET	FRONT PLATE TO CRANKCASE
37	15395	INDICATOR	INJECTION PUMP TIMING
39	15465	PETCOCK	CYLINDER BLOCK WATER DRAIN
40	15485	WASHER	
42	13887	BACKPLATE	
45	15439	DOWEL	BACKPLATE TO BLOCK
46	15394	GASKET	RACKPLATE TO BLOCK
47	15474	O-RING	BACKPLATE TO BLOCK
51	15555	LUCKWASHER	
58	15420	SLAL	INCLUDES COVER
59	15405	GASKFT	

FOUR 601 CRANKSHAFT - CAMSHAFT - ROD

HEF	PN	NAME	REMARKS
1	15342	ROD	RH 🗝 NO 2 & 4 CYLINUEHS
2	15345	ROD	LH NO 1 & 3 CYLINDERS
3	15343	RUSHING	
4	15311	BOLT	
5	15344	WASHER	
6-1	15447	BEARING	CUNNECTING ROD 🝨 STANUAXD
6-2	<u>15448</u>	BEARING	CONNECTING ROD 📕 🖉 1 🖉 🖷 U/S
7 .	15332	CRANKSHAFT	
8	15440	PLUG	
9-1	15445	BEARING	MAIN - STANDARD
9-2	<u>1</u> 5446	BEARING	MAIN 🗝 "Ø1Ø" U/S
10	15412	THRUSTWASHER	UPPER
11	15413	THRUSTWASHER	LOWER
12	15389	GLAR	CAMSHAFT DRIVE
13	15333	GEAR	INJECTION PUMP DRIVE
14	1465.4	WASHER	PACKING 🗮 GEARS
15	15298	SLINGER	
16-1	15534	PULLEY	STANDARD
16-2	15069	PULLEY	ACCESSORY = 1 GROOVE = 6" OD = A SECTION
17	15335	DISC	TIMING
20	14446	KEY	
21	14613	NUT	
22	14574	LOCKWASHER	
30	15387	CAMSHAFT	
31	15307	PLATE	CAMSHAFT LOCATING
34	<u>15388</u>	GEAR	CAMSHAFT
35	14531	KEY	
36	14540	NUT	
57	14544	LOCKWASHER	
38	14542	CHAIN	CAMSHAFT DRIVE
39	15476	TENSIONER	CHAIN
41	14435	HEAD	TENSIONER
42	15475	WRENCH	ALLEN
43	14506	GASKEI	TENSIONER TO FRONT PLATE
45	14507		
46-1	15302		STANDARU
46-2	15303		INTO/S
4/	153.26	PUSHROD	

FOUR 60: INJECTION PUMP URIVE SYSTEM

REF	PN	NAME	REMARKS
1	15360	HUB	
2	15361	BOLT	
3	15562	GAŜKET	HUB TO FROMT PLATE
4	15565	GEAR	INJECTION PUMP DRIVE
5	15436	BUSHING	
6	15364	PLATE	TWO HALVES
7	15365	FLANGE	
8	<u>15429</u>	RING	RETAINING
11	15366	CHAIN	INJECTION PUMP DRIVE
12	15598	LINE	OIL - TENSIONER
13	15667	BOLT	BANJO
14	15485	WASHER	BANJO BOLT
15	15636	TENSIONER	CHAIN 🛥 ASSLMBLY
29	15661)	BLOCK	
21	14506	GASKET	TENSIONER TO FRONT PLATE
22	15569	GASKET	BLOCK TO FRONT PLATE
24	14507	LUCKWASHER	
25	14435	HEAD	TENSIONER
26	14509	KIT	REPAIR - CHAIN TENSIONER

FOUR 601 CYLINDER HEAD

4E+	ч	NAME	REMARKS
:	15516	HEAD	ASSEMBLY INCLUDING VALVE GUIDES
2-1	13319	GUIDE	INLET VALVE - STANDARD
2-2	15320	GUIDE	INLET VALVE 📕 ,010" O/S
₹ = 1	15511	GUIDE	EXHAUST VALVE 🗕 STANDARD
3+2	15318	GUIDE	EXHAUST VALVE - ,010" O/S
4	14433	PLUG	
5	1459/	PLUG	
6	15321	INSERT	COMBUSTION CHAMBER
7	15432	STUD	THERMOSTAT HOUSING
9	1-495	STUD	ROCKER BRACKET 💌 SHORT
2	15495	STUD	PUCKER BRACKET = LONG
1	15430	STUD	INLET AND EXHAUST MANIFOLD
11	15322	STUD	INLET AND EXHAUST MANIFOLD - HEX
12	1-431	STUD	INJECTOR CLAMP
14	15323	VALVE	INLET
	15324	VALVE	FXHAUST
16	15325	SPRING	VALVE • OUTER
17	1541/	SPRING	VALVE INNER
18	15419	CUP	VALVE SPRING BOTTOM
19	15418	CUP	VALVE SPRING - TOP
29	15411	SEAL	
21	12240	COTTER	VALVE
55	15321	CLIP	COTTER RETAINING
23	154/8	GASKEI	CYLINDER HEAD
24	14445		CYLINDER MEAD STUD
25	14443	MASHER	
35	1-3-3-3		INCRMUSIAI BYPASS
30	10422	WASHER	
43	153/4	GASKET	
45	15033		
4/	17441		MANIFULU CLAMPING
48	170/0	MINCND:	тор
49	17072		
217	170/3	T LL LE K	
)]	150/3		DULIUM
22	11400	CLAMP	

FOUR 601 ROCKER SHAFT - VALVE COVER

HEF	РΝ	NAME	REMARKS
1	15304	SHAFT	ROCKER
2	14555	PLUG	PLAIN
3	14646	PLUG	THREADED
4	15461	BHACKET	1 PER ENGINE - TAPPLD
5-1	15459	BRACKET	2 PER ENGINE PLAIN
5-2	15460	BHACKET	1 PER ENGINE - WITH OIL HOLE
6	15487	SPRING	
10	15401	ROCKER	
11	15400	SCRLW	TAPPET ADJUSTING
12	15486	NUT	LOCK NG
13	14481	SCREW	LUCAT NG
14	15310	PLATE	ROCKER SHAFT BRACKET
15	15305	WASHER	SPR ING
16	15486	WASHER	PLAIN
19	15399	COVER	VALVE - ROCKER
22	14515	CAP	OIL FILL
21	14516	WASHER	
22	15315	GASKET	VALVE COVER
23	15309	BKACKET	LIFTING
24	14808	BUSHING	
25	15299	WASHER	
26	14877	SCREW	

FOUR 60: LUBE OIL PUMP - STRAINER - FILTER

REF	PN	NAME	RLMARKS
1	15339	PUMP	01L
2	15340	GASKET	PUMP TO CRANKCASE
6	15405	SHAFT	TACHOMETER DRIVE SHAFT
7	15341	GASKET	INORIGINETER GRAFTE ORIVIT
10	15406	SEAL	
11	14550	VALVE	OIL RELIEF
12	14549	SPRING	
13	14608	NUT	
14	14720		COPPER
16	15356		
17	15314	FLANGE	OUTER
18	15416	GASKET	
20	15482	LUCKWASHER	
25	15471	O⇔RING	OIL PUMP COVER TO BODY
26	11951	FILTER	LUBE OIL - SCREW IN TYPE
27	15698	AUAPIER	
20	11984	GASKEI FLDOW	LOBE OIL BOSS
30	16633	SCREW	LUNG
31	16632	SCREW	SHORT
32	13610	NIPPLE	

REF	PN	NAME	REMARKS
1	15084	SUMP	
2	15462	PLUG	DRAIN
3	14453	WASHER	
4	15357	DIPSTICK	
5	15421	BUSHING	
6	15455	GASKET	SUMP TO BLOCK
7	15499	RING	
8	15435	TUBE	DIPSTICK
9	15386	StAL	OIL - SUMP TO FRONT MAIN BEARING
14	15433	STUD	

v

ę

••

¢

۰.

۰,

14.

.

_

ļ

FOUR 601 FRESH WATER PUMP

REF	РМ	NAME	REMARKS
1	15409	PUMP	FRESH WATER - COMPLETE
2	15379	IMPELLER	
3	15463	SEAL	
4	15415	BEARING	
5	15313	WIRE	BEARING LOCATING
6	15497	SCREW	LUBRICATION POINT
7	15484	WASHER	FIBRE
8	1538Ø	HUB	WATER PUMP.PULLEY
9	15383	ADAPTER	THEHMOSTAT BYPASS
10	15422	WASHER	
11	15414	ADAPTER	WATER PUMP TO BLOCK
12	1538 <u>1</u>	GASKET	PUMP TO ADAPTER
13	15382	GASKET	ADAPTER TO BLOCK
19	15576	PULLEY	WATER PUMP

Г

, ,

-

.

FOUR 60: CU'JLING SYSTEM

REF	ΡN	NAME	REMARKS
1	15055	EXCHANGER	
2	11505	CLAMP	
3	11405	CLAMP	HOSE
4	11/79	HOSE	
5	11254	NIPPLE	HOSE
6	16434	ELBOW	
7	13554	NIPPLE	
8	15057	FLANGE	EXHAUST
9	12272	STUD	EXHAUST FLANGE
10	15058	GASKET	EXHAUST FLANGE
11	16433	PLUG	
12	11928	STUD	MANIFOLD END PLATE
13	15094	PLATE	MANIFOLD END
14	15096	GASKET	MANIFOLD ENU PLATE
15	15056	MANIFOLD	EXHAUST
16	11520	TUBING	
17	13329	EL80W	ENLED
18	11/51	NECK	
19	11499	CAP	PHESSURE
20	13003	ELBOW	EVUALUET DODT DUATE TO COVED
21	11420		EXHAUST PURI PLATE TO COVER
22	10009	PLATE	EXHAUST FLANGE PORT
20	12004	BRACKET	LEAT EXCLANCED
24	12224		MOLINED
26	11860	GASKET	THERMOSTAT HOUSING
20	15420		
28	15474	THERMOSTAT	THER WOOTAT
20	13338		
30	13610	NIPPIF	HOSE
31	1-1517	HOSE	HODE
32	11344	CLAMP	SEA WATER HOSE
33	15098	PLIMP	SEA WATER
34	13697	DRIVE	SEA WATER PUMP
35	13700	GASKET	SEA WATER PUMP TO ADAPTER
36	13696	ADAPTER	SEA WATER PUMP TO PLATE
37	15438	GASKET	PUMP ADAPTER TO TIMING COVER

.

FOUR 60: FUEL SYSTEM

FOUH 60 FUEL SYSTEM

REF	PN	NAME	REMARKS
1	15370	LINE	#1 INJECTOR
2.	15371	LINE	#2 INJECTOR
S	153/2	LINE	#3 INJECTOR
4	153/3		#4 INJECTOR
2	14492		
7	14970		INFOTOP
8	15303		
õ	14463	WASHER	HEAT SHIELD
10	15480	1 INF	RETURN - PLASTIC
11	14462	SHIELD	HEAT
12	14464	WASHER	INJECTOR SEALING
13	14490	WASHER	INJECTOR HOLDER
<u>1</u> 4	15424	BANJÓ	SINGLE PUSH-ON
15	15423	BANJO	DOUBLE PUSH-ON
16	15468	BANJO	DOUBLE PUSH-ON/THREADED
17	11935	BOLT	BANJO
18	11943	WASHER	BANJO BOLT
19	15328	CLAMP	INJECTOR HULDER
20	15(09	PUMP	HUEL LIFT CUMPLETE
∠⊥ 22-1	15426	GASKEI	ELLEL - COMPLETE
22=2	11703		
22-3	15478	SEAL	FUEL FILTER COVER
23	15477	SHAFT	INJECTION PUMP DRIVE
24	15359	PUMP	FUEL INJECTION COMPLETE
25	15071	BRACKET	FUEL FILTER MOUNTING
26	11941	BANJO	
27	12350	ROLT	
28	12522	WASHER	
29	15502	AUAPTER	FUEL RETURN
30	11920		FUEL INLEI
31	11090		FUEL INLET AT LIFT PUMP
33-1 33-0	11609	FILIER	
33-2	13760		PRIMARY FUEL STUTER = AC ITER!
33-4	13761	FLEMENT	PHIMARY FUEL FILTER - FRAM FEILUAM
34	1.1597	FERRULE	
35	15500	WASHER	PLUG
36	14664	PEHG	
37	15503	GASKET	INJECTION PUMP COVEH
38	14662	VALVE	FILTER NON RETUHN
39	16707	NUT	FUEL OUTLET AT FILTER
40	16677	LINE	LIFT PUMP TO FILTER
41	146/1		FUEL INLET AT FILTER
42	140/10 15604		
т о 4 л	16678		
45	16676		
46	16679	LINE	FUTER TO INJECTION PUMP
49	16706	FITTING	FUEL LINE
		-	

ο,

п

FOUR 60: ELECTRICAL SYSTEM

REF	PN	NAME	REMARKS
1-1	11931	AMMETER	2 3/8" OD - ELECTHIC PANEL
1=2	16550	AMMETER	2 1/32" OD - ELECTRIC PANEL
2=1	11917	TACHOMETER	ELECTRIC PANEL
2=2	16456	TACH CABLE	4' - FOR 3/4"-27 TPI TACH DRIVE THREAD
2-3	16457	TACH CABLE	67 FOR 3/4"-27 TPI TACH DRIVE THREAD
2=4	16458	TACH CABLE	87 - FOR 3/4"-27 TPI TACH DRIVE THREAD
2*5	16459	TACH CABLE	10' FOR 3/4"-27 TPI TACH DRIVE THREAD
3-1	11914	GUAGE	PRESSURE - 2 3/8" OD - ELECTRIC PANEL
3+2	16548	GUAGE	PHESSURE 2 1/32" OD ELECTRIC PANEL
4-1	11913	GUAGE	TEMPERATURE = 2 378" 00 ELECTRIC PANEL
4=2	16249	GUAGE	ILMPERATURE = 2 1/32" OD = ELECTRIC PANLL
2™1 5-0	11432	LIGHI BULB	
542	14957	SUCKET	LAMP 2 375" UU GUAGLS
7	13710		
8	11956	KEVSWITCH	STARTING
9 ⊸ 1	11546	ALTERNATOR	55 AMP = 12 VDC = NEG GND
9=2	11548	PULLEY	11546 ALTERNATOR
9=3	13859	BELT	11546 ALTERNATOR
9-4	13701	BHACKET	11546 ALTERNATOH MOUNTING
9=5	11125	STRAP	ADJUSTING 🖷 11546 ALTERNATOR
9=6	11670	WIRE	11546 ALTERNATOR LXICATION
10	1155Ø	REGULATOR	ALTERNATOR
11	11383	SWITCH	OIL PRESSURE - ALTEHNATOR FIELD
12-1	11916	SENDER	11914 OIL PRESSURE GUAGE - UNGROUNDED
12=2	16551	SENDER	16548 OIL PRESSURE GUAGE = GROUNDED
13-1	11915	SENDER	11913 WATER TEMP GUAGE - UNGROUNDED
13-2	16552	SENDER	16549 WATER TEMP GUAGE - GROUNDED
14	11489	SULENUID	
17	11222	SWITCH	WATED TEMDEDATUDE ALARM SYSTEM
17	17355		WATER TEMPERATURE ALARM STSTEM
18-1	11556	STARTER	9.25" HOUSING LENGTH
18-2	16762	STARTER	7.50" HOUSING LENGTH
20	12959	TACH KIT	ELECTRIC TACHOMETER TO ALTEHNATOR
21-1	12317	PANEL	ALL ELECTRIC
21-2	16023	RING	2 1/16" OD GUAGE TO 2 3/8" PANEL CUTOUT
22	13368	PANEL	KEYSWITCH
23	11549	CARLE	ALTERNATOR TO REGULATOR
24-1	11693	PANEL	SKIPPER 🐱 MECHANICAL TACHOMETER
24-2	13707	NUT	TACH CABLE TO TACH URIVE
24=3	13868	GUAGE	UIL PRESSURE - REPLACEMENT - 11695 PANEL
24=4	12883		KEPLAGEMENT M 11693 PANEL
24#7	14070		WAIER IEWE - REPLACEMENT - 11093 FAREL Rediagement - 11603 Danii
2770 28-1	13790		12 MP = 12 Vir = NEG CNO
25-2	15/09	BRUSH	SET OF $2 = 13789$ GENERATOR
25-2	15166	STRAP	
20-0	10400		ACCOUNT 10703 CENERATOR

FOLR 60: ELECTRICAL SYSTEM

FOUR 601 ELECTRICAL SYSTEM

REF	PN	NAME	REMÄRKS
25-4	15425	PULLEY	13789 GENERATOR
25-5	15375	WASHER	13789 GENERATOR PULLEY
25=6	15377	STUD	13789 GENERATOR TO ADJUSTING STRAP
25=7	15376	BRACKET	13789 GENERATOR MOUNTING
25=8	15472	BELT	13789 GENERATOR
26	13790	REGULATOR	13789 GENERATOR
27	15464	GLOW PLUG	9 VOLT
28	11542	SENDER	OIL PRESSURE • 13693 SKIPPER PANEL
29	11543	SENDER	WATER TEMPERATURE - 11693 SKIPPER PANEL
30	11692	SOCKET	11693 SKIPPER PANEL - LAMP

REF	PN	NAME	REMARKS
1	1510616	MOUNT	FRONT LEFT 6 RIGHT
2=1	1 2 2 7 5	MOUNT	REAR LEFT 8 RIGHT [–] SIDE HOUSING PA3
2-2	1610410	MOUNT	REAR LEFT 8 RIGHT – FOR TYPE SS TRANSMISSION
2-3	1 1 6 8 7	ISOLATOR	USED WITH ALL MOUNTS

FOUR 6BI BACK END ARRANGEMENT

Г

REF	PN	NAME	RLMARKS
1	15080	FLYWHLEL	EXCLUDES RING GEAH
2	15338	LOCKWASHER	FLYWHEEL BOLT
3	15494	BOLT	FLYWHEEL TO CRANKSHAFT
4=1	15064	DAMPER	TYPE SAD TRANSMISSION
4=2	16024	DAMPER	FREEWHEELING SAILING TRANSMISSION
5-1	15090	HOUSING	TYPE SAØ TRANSMISSION
5=2	16399	HOUSING	FREEWHEELING SAILING TRANSMISSION
5⇒3	16508	HOUSING	TYPE SS TRANSMISSION
6	13555	SCREW	DAMPER TO FLYWHEEL
7	11955	DOWEL	HOUSING TO BACKPLATE
8	13704	BUSHING	SAØ TRANSMISSION SHAFT SUPPORT
9	11315	RING GEAR	FORWARD RING GEAR NOT USED
10	14437	DOWEL	FLYWHEEL TO CRANKSHAFT
11	16441	DAMPER	RUBBER - TYPE SS TRANSMISSION
12	13416	COUPLING	DRIVE DAMPER TO DISC
13	16366	DISC	DRIVE 🖷 TYPE SS TKANSMISSION

REF	PN	NAME	REMARKS
1 2=1 2=2	14894 14857 14858	GEAR TAILSHAFT TA∎LSHAFT	ENGINE R LVLRSE GEAH REVERSE GEAH
2=3 3 4 5	14899 14891 14868 14892	HUUSING GASKET PLATE	RTVTRSE GEAR HAND HOLE COVER FRONT END
6 7 8	14373 14893 14876	RING GASKET GASKET	RETAINING REVERSE GEAH HOUSING REVERSE GEAH HOUSING FRONT REAR REVEHSE GEAR HOUSING
9 10 11 12	14895 14867 14883 14879	DIPSTICK COVER TUPE PIN	ASSEMBLY HAND HOLE Filler BRAKE BAND LOCK
13 14 15	14861 14863 14864	CROSS SHAFT COUPLING RETAINER	GEAR HALF OIL SEAL
16=1 16=2 17	14865 14866 14852	THRUSTWASHEH THRUSTWASHEH LEVER	REVERSE GEAH TAILSHAFT REVERSE GEAR TAILSHAFT
18+1 18+2 19 20	14377 14323 14875 14884	NUT NUT LOCKWASHER	REVERSE GEAH TAILSHAFT REVERSE GEAH TAILSHAFT REVERSE GEAR TAILSHAFT
21 22 23	14885 14896 14886	RETAINER SEAL OHING	OIL SEAL FRONT PLATE
24 25 26	14887 14882 14516	P∎N BEARING K€Y	ROLL RILL - REVEHSE GEAR HOUSING - RLAR WOODRUFF - CROSS SHAFT
27 32 33 34	14880 14888 14888 14862	BREATHER SEAL YOKE	COVER ASSEMBLY
35 36 37	14903 14898 14898	RING RING Blaring	RETAINING - ENGINL GEAR RETAINER - FRONT PLATE BALL - ENGINE GEAR
38 40 41 42	14889 14890 14834	TUPE BAFFLE Case Shaft	DIPSTICK COVER GEAH PLNION
43 44 45	14836 14837 14840	GEAR PINION BUSHING	PROPELLER ASSEMBLY LONG PINION
46 47 48 49	14838 14841 14845 14845	PINION BUSHING PLATE PLATE	ASSEMBLY - SHORT PINION STEEL - CLUTCH PHESSURE
50 51 52	14847 14849 14851	SLEEVE PIN FINGER	OPERATING FINGER
53 54 55 56	14854 14855 14859 14871	SCREW PLATE LOCKSCREW SPACER	COLLAR BRONZE - CLUTCH PHESSURE PLATE SHORT PINION

TYPE SAU TRANSMISSION

REF	PN	NAME	REMARKS
57 58 59	<u>1</u> 4874 14877 14373	RLNG BEARING RING DEADING	RETAINING - PINION SHAFT GEAR CASL BALL - GEAR CASE RETAINING - GEAR CASE BALL BEARING BALL - DU OT
61	14001	KEARING	UNALL FILUI UNADDUET - DEVEDET GEAD - TAIIQUAET
62	14044		BHAKE
63	14860	SLIDE	REVERSE CAM
64	14870	SPRING	
65	14853	CAM	REVERSE
66	14856	NUT	
67	14869	RHACE	
68	14872	LUCKSPRING	
69	14878	PIN	
70	14873	NUT	
71	14299	GtAR	INTERNAL
12	14321	GASKET	
73	14533	SPACER	
74	14337	SPACER	
75	14357	COUPLING	
76	14375	SNAPRING	
//	14378		
78	143/9		0.1
/ 9	14390	SEAL	U1L
87	14352		WASHER
84	14.596	BEARING	R A L I
85	14835	PLATE	RIDUCTION ADAPTER
86	14309	HOUSING	RIDUCTION GTAR
87	14839	GLAH	REDUCTION DHIVING
88	14843	BLARING	BALL - REDUCTION ADAPTER PLATE
92	14900	PLATE	ADAPTER
93	14901	SEAL	OIL
94	14902	RINGS	RETAINING - TAILSHAFT

FREEWHEELING SAILING GEAR - MANUAL - 1.9:1

FREE WHEELING SAILING GEAR - MANUAL 1,911

REF	PN	NAME	REMARKS
1 2 3 4 5	14212 14211 14172 14205 14170 11645	ADAPTER PLUG PLUG GASKET PLUG COUPLING	BORLD 1"
6-2	13974	CDUPLING	OTHER THAN 1" BORE - SPECIFY
7	14228	BOLT	
8	14177	COVER	
9	14178	GASKET	
10	14224	BOLT	
12	14202	SEAL	
13	14232	NUT	COMPLETE
15	11643	LEVER	
16	11644	KNOB	
17	11642	GEAR	
19	14209	GEAR	
20	14165	BEARING	
21	14216	LOCK	
22	14204	BEARING	
26	14206	GEAR	
27	14168	BEARING	
28	14217	LOCK	
29	14181	G t AR	
30	14166	REARING	
31	14179	SUPPORT	
32	14199	LUCK	
33	14221	BOLT	
35	14180	WASHER	
36	14229	BOLT	
38	14193	CONE	
39	14183	SHAFT	
4Ø 41 42 43	14163 14208 14169 14167	SHIM WASHER WASHER ORING BOLT	
45 46 48 49	14160 14223 14162 14184	WASHER BOLT BEARING SPACEH SLEEVE	
50	14102	SEELVE	
51	14201	SEAL	
52	14175	HOUSING	
53	14173	GASKET	
54	14226	BOLT	
55	14159	PLUG	
57	14157	WASHER	
58	14203	DIPSTICK	
59	14158	GASKET	
60	14194	NIPPLE	
61	14176	HOUSING	
62	14174	GASKET	
63	14226	BOLT	

0.3

ν.

.

FREEWHEELING SAILING GEAR - MANUAL - 1.9:1

FREE WHEELING SAILING GEAR - MANUAL - 1,911

REMARKS

REF	PN	NAME
65	14220	0 PING
66	14195	CUVER
67	14196	FLANGE
68	14200	SEAL
69	14197	GASKET
7 0	14222	BOLT
72	14190	HOUSING
73	14197	GASKET
74	14219	BOLT
75	14230	NUT
77	14218	BOLT
78	14230	NUT
79	14188	PIN
80	14189	SLEEVE
81	14191	SPRING
84	14171	ARM
85	14224	ROLT
86	14186	SHAFT
87	14187	PIN
88	14213	KE Y
89	14185	COUPLING
90	14214	KEY

IYPE SSR (DS ENGINE) & SSL (4-60 ENGINE) TRANSMISSION

.

HEF	PN	NAME	REMARKS
1-1 1•2 2	14998 16310 14993	HOUSING HOUSING GASKET	HOUSING 8 PLATE ASSY - DS ENGINE Housing & plate assy - Four 60 Engine
3	14990	PIN	ALIGYMENT
4	14999	CAPSCREW	12 POINT
5	1354 <u>1</u>	PLUG	P∎PE
6	14992	DIPSTICK	DIPSTICK ANU VENT ASSEMBLY
7	14981	AHY	
8	14975	PIN	ULUTCH ACTUAT NG
10	149/4		
4 4	14950		IULER SHAFT
12	14983		IULER SHAFT
13	14973	WASHER	THRUST R IDI FR
14	14954	BLARING	NEEDLE ROLLER - IDLER
15-1	14986	GEAR	DRIVER - DS ENGINE 8 FOUR 60 ENGINE 211
15-2	16311	GE AR	DRIVER - FOUR 60 ENGINE 1,3:1
16	14969	BEARING	BALL - ASSEMBLY
17	14952	RING	RETAINING
18	14971	SEAL	INPUT SHAFT
19	14962	RACL	IHRUST INPUT SHAFT
20	14904	REARING	NECOLE INKUSI = INPUL SHAFT Necole dolled = Induit shaft
22	14976	SHAFT	
23	14982	SHAFT	OUTPUT
24-1	14985	CLUTCH	DS ENGINE
24+2	16314	CLUTCH	FOUR 60 ENGINE
25	14978	WASHER	CLUTCH FACE
26-1	14988	GEAR 30T	DHIVEN - DS ENGINE
26-2	16312	GEAR 30T	DRIVEN - FOUR 60 ENGINE 1,311
20-3	16313	GEAR 3QT	DRIVEN FOUR ON ENGINE 211
2/=1	16315	GEAR 201 GEAR DAT	UKIYEN - EOUD 611 ENGINE 4 344
27-3	16316	GFAR 26T	DRIVEN $=$ FOUR 68 ENGINE 2:1
28	14966	BEARING	NEEDLE ROLLER - GEAR
29	14967	REARING	NEEDLE ROLLER - BASE
30	1496Ø	RACE	THRUST 🖷 OUTPUT SHAFT.
31	14961	RACE	THRUST OUTPUT SHAFT
32	14963	BEAHING	NEEDLE THRUST - OUTPUT SHAFT
33	14953	RING	RLIAINING
34 76	14900	BLARING	DETATNI INC
36	14972	SEAL	OUTPUT SHAFT
37	14957	KEY	OUTPUT SHAFT
38	14984	COUPLING	
39	14958	0-RING	COUPLING
40	14980	WASHER	COUPLING
41	14970	LOCKNUT	COUPLING
42	14996	SHAFT	LEVER ARM
45	14997		
44 15	14950	PIN D-RINC	LEVER ARM SHAFT
46	14989	WASHER	BELLEVILLE
· -		······································	

TYPE SSR (DS ENGINE) 8 SSL (4-60 ENGINE) TRANSMISSION

HEF	PN	NAME	REMARKS
47	14979	SPRING	INDEXING SEGMENT
48	14990	PIN	GUIDE 🖛 INDEXING 🖛 SEGMENT
49	14977	SEGMENT	INDEXING
50	16119	NAMEPLATE	DRIVE SCREW
51	14994	PIN	IDLER SHAFT
52	14995	SHOE	CLUTCH
53	16428	NAMEPLATE	
54 – 1	16662	KIT	IMPELLER REPLACEMENT Not applicable
54-2	16663	SEAL	— on
54=3	16445	KIT	PUMP REBUILD Model Four-60
	11192	Trans	SSL-13
	11853	Trans	SSL-20

DWG NO. 11197

FOUR 60: RAW WATER PUMP

REF	PN	NAME	REMARKS
1-1 1-2 2 3	17557 17561 17558 17559 17556	BØDY KIT CØVER Shaft Imdelled	PUMP REBUILD
4 5 6 7 8 9 10 11	17556 17552 17550 17550 17551 17554 17553	CAM SEAL RING GASKET SCREW PLUG GREASE CUP	TWB REQUIRED RETAINING CBVER CBVER - FIVE REQUIRED

۲ ب

1.1

ē. Ē. s

Ĺ

FOUR 60: MISCELLANEOUS

HEF	PN	NAME	REMARKS
1	13859	BELT	ALTERNATOH DRIVING
2	15457	GASKET SET	UPPER
3	15456	GASKET SET	LOWER
4	16650	KIT	SPARE PARTS 'A'
5	16651	KIT	SPARE PARTS 'B'
6	13758	PAINT	RED - AEROSOL CAN
7	11592	PUMP	LUBE OIL SUMP
8	13826	TURING	SUMP PUMP TO DIPSTICK TUBE